Properties

Label 3.2e2_307.9t12.3c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 307 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$1228= 2^{2} \cdot 307 $
Artin number field: Splitting field of $f= x^{9} + x^{7} - 3 x^{6} - x^{5} - 2 x^{4} + 2 x^{3} + 3 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.307.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 28\cdot 37 + 3\cdot 37^{2} + 22\cdot 37^{3} + 28\cdot 37^{4} + 9\cdot 37^{5} + 32\cdot 37^{6} + 14\cdot 37^{7} + 15\cdot 37^{8} + 5\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 20 a + 2 + \left(21 a^{2} + 10 a + 2\right)\cdot 37 + \left(33 a^{2} + 27 a + 6\right)\cdot 37^{2} + \left(12 a^{2} + 34 a + 15\right)\cdot 37^{3} + \left(11 a^{2} + 28 a + 1\right)\cdot 37^{4} + \left(28 a^{2} + 5 a + 33\right)\cdot 37^{5} + \left(7 a^{2} + 35 a + 7\right)\cdot 37^{6} + \left(23 a^{2} + 3 a + 35\right)\cdot 37^{7} + \left(24 a^{2} + 34 a + 31\right)\cdot 37^{8} + \left(15 a^{2} + 25 a + 22\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 34 a^{2} + 24 a + 14 + \left(8 a^{2} + 11 a + 32\right)\cdot 37 + \left(27 a^{2} + 21 a + 6\right)\cdot 37^{2} + \left(32 a^{2} + 36 a + 12\right)\cdot 37^{3} + \left(25 a^{2} + 35\right)\cdot 37^{4} + \left(24 a^{2} + 10 a + 32\right)\cdot 37^{5} + \left(4 a^{2} + 4 a + 10\right)\cdot 37^{6} + \left(20 a^{2} + 25 a + 25\right)\cdot 37^{7} + \left(34 a^{2} + 33 a + 22\right)\cdot 37^{8} + \left(22 a^{2} + 34 a\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 20 a + 21 + \left(15 a^{2} + 18 a + 20\right)\cdot 37 + \left(5 a^{2} + 11 a + 30\right)\cdot 37^{2} + \left(7 a^{2} + 3 a + 20\right)\cdot 37^{3} + \left(29 a^{2} + 22 a + 11\right)\cdot 37^{4} + \left(18 a^{2} + 8 a + 9\right)\cdot 37^{5} + \left(26 a^{2} + 4 a + 24\right)\cdot 37^{6} + \left(6 a^{2} + 30 a + 8\right)\cdot 37^{7} + \left(32 a^{2} + 4 a + 13\right)\cdot 37^{8} + \left(17 a^{2} + 2 a + 17\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 25 a + 11 + \left(17 a^{2} + 27 a + 22\right)\cdot 37 + \left(17 a^{2} + 36 a + 15\right)\cdot 37^{2} + \left(15 a^{2} + 34 a + 25\right)\cdot 37^{3} + \left(4 a^{2} + 34 a + 10\right)\cdot 37^{4} + \left(21 a^{2} + 26 a + 4\right)\cdot 37^{5} + \left(15 a^{2} + 29 a + 2\right)\cdot 37^{6} + \left(31 a^{2} + 6 a + 31\right)\cdot 37^{7} + \left(31 a^{2} + 35 a + 23\right)\cdot 37^{8} + \left(27 a^{2} + 15 a + 34\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 32 a^{2} + 30 a + 6 + \left(12 a^{2} + 6 a + 11\right)\cdot 37 + \left(4 a^{2} + 4 a + 26\right)\cdot 37^{2} + \left(34 a^{2} + 34 a + 17\right)\cdot 37^{3} + \left(18 a^{2} + 13 a + 7\right)\cdot 37^{4} + \left(30 a^{2} + 18 a + 19\right)\cdot 37^{5} + \left(5 a^{2} + 28 a + 15\right)\cdot 37^{6} + \left(10 a^{2} + 18 a + 22\right)\cdot 37^{7} + \left(7 a^{2} + 35 a + 24\right)\cdot 37^{8} + \left(33 a^{2} + 36 a + 4\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 3 + 24\cdot 37 + 37^{2} + 7\cdot 37^{3} + 10\cdot 37^{4} + 20\cdot 37^{5} + 16\cdot 37^{6} + 28\cdot 37^{7} + 22\cdot 37^{8} + 28\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 6 + 22\cdot 37 + 19\cdot 37^{2} + 29\cdot 37^{3} + 37^{4} + 37^{5} + 7\cdot 37^{6} + 36\cdot 37^{7} + 26\cdot 37^{8} + 25\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 22 a^{2} + 29 a + 9 + \left(35 a^{2} + 35 a + 22\right)\cdot 37 + \left(22 a^{2} + 9 a\right)\cdot 37^{2} + \left(8 a^{2} + 4 a + 35\right)\cdot 37^{3} + \left(21 a^{2} + 10 a + 3\right)\cdot 37^{4} + \left(24 a^{2} + 4 a + 18\right)\cdot 37^{5} + \left(13 a^{2} + 9 a + 31\right)\cdot 37^{6} + \left(19 a^{2} + 26 a + 19\right)\cdot 37^{7} + \left(17 a^{2} + 4 a + 3\right)\cdot 37^{8} + \left(30 a^{2} + 32 a + 8\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,4)(3,5)(6,9)$
$(2,5,9)(3,4,6)$
$(1,9,4)(2,3,7)(5,6,8)$
$(1,8,7)(2,9,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,3)(4,8)(6,7)$$1$
$1$$3$$(1,8,7)(2,9,5)(3,4,6)$$-3 \zeta_{3} - 3$
$1$$3$$(1,7,8)(2,5,9)(3,6,4)$$3 \zeta_{3}$
$6$$3$$(1,9,4)(2,3,7)(5,6,8)$$0$
$6$$3$$(1,2,4)(3,7,5)(6,8,9)$$0$
$6$$3$$(2,5,9)(3,4,6)$$0$
$6$$3$$(1,4,5)(2,8,6)(3,9,7)$$0$
$9$$6$$(1,6,8,3,7,4)(2,5,9)$$\zeta_{3}$
$9$$6$$(1,4,7,3,8,6)(2,9,5)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.