Properties

Label 3.2e2_29_73.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 29 \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$8468= 2^{2} \cdot 29 \cdot 73 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 5 x^{2} + 3 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 1 + \left(30 a + 1\right)\cdot 31 + \left(5 a + 26\right)\cdot 31^{2} + \left(8 a + 15\right)\cdot 31^{3} + \left(18 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 12 + \left(25 a + 6\right)\cdot 31 + \left(19 a + 7\right)\cdot 31^{2} + \left(24 a + 26\right)\cdot 31^{3} + \left(5 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 22 + 5\cdot 31 + \left(25 a + 7\right)\cdot 31^{2} + \left(22 a + 26\right)\cdot 31^{3} + \left(12 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 28 + \left(5 a + 17\right)\cdot 31 + \left(11 a + 21\right)\cdot 31^{2} + \left(6 a + 24\right)\cdot 31^{3} + \left(25 a + 14\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.