Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 123\cdot 421 + 198\cdot 421^{2} + 26\cdot 421^{3} + 177\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 181 + 340\cdot 421 + 74\cdot 421^{2} + 272\cdot 421^{3} + 92\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 250 + 238\cdot 421 + 182\cdot 421^{2} + 216\cdot 421^{3} + 191\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 405 + 139\cdot 421 + 386\cdot 421^{2} + 326\cdot 421^{3} + 380\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.