Properties

Label 3.2e2_23_37.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 23 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3404= 2^{2} \cdot 23 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 9 x^{4} - 13 x^{3} + 14 x^{2} - 8 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.23_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 46 a + 84 + \left(31 a + 91\right)\cdot 131 + \left(112 a + 29\right)\cdot 131^{2} + \left(9 a + 16\right)\cdot 131^{3} + \left(124 a + 32\right)\cdot 131^{4} + \left(80 a + 70\right)\cdot 131^{5} + \left(2 a + 56\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 85 a + 6 + \left(99 a + 40\right)\cdot 131 + \left(18 a + 54\right)\cdot 131^{2} + \left(121 a + 74\right)\cdot 131^{3} + \left(6 a + 125\right)\cdot 131^{4} + \left(50 a + 7\right)\cdot 131^{5} + \left(128 a + 117\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 45 + 54\cdot 131 + 46\cdot 131^{2} + 13\cdot 131^{3} + 66\cdot 131^{4} + 13\cdot 131^{5} + 72\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 46 a + 126 + \left(31 a + 90\right)\cdot 131 + \left(112 a + 76\right)\cdot 131^{2} + \left(9 a + 56\right)\cdot 131^{3} + \left(124 a + 5\right)\cdot 131^{4} + \left(80 a + 123\right)\cdot 131^{5} + \left(2 a + 13\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 85 a + 48 + \left(99 a + 39\right)\cdot 131 + \left(18 a + 101\right)\cdot 131^{2} + \left(121 a + 114\right)\cdot 131^{3} + \left(6 a + 98\right)\cdot 131^{4} + \left(50 a + 60\right)\cdot 131^{5} + \left(128 a + 74\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 87 + 76\cdot 131 + 84\cdot 131^{2} + 117\cdot 131^{3} + 64\cdot 131^{4} + 117\cdot 131^{5} + 58\cdot 131^{6} +O\left(131^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,4)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,5)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$1$
$6$$2$$(1,2)(3,6)(4,5)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,5,6)$$1$
$6$$4$$(1,5)(2,3,4,6)$$-1$
$8$$6$$(1,2,3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.