Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 46 a + 84 + \left(31 a + 91\right)\cdot 131 + \left(112 a + 29\right)\cdot 131^{2} + \left(9 a + 16\right)\cdot 131^{3} + \left(124 a + 32\right)\cdot 131^{4} + \left(80 a + 70\right)\cdot 131^{5} + \left(2 a + 56\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 85 a + 6 + \left(99 a + 40\right)\cdot 131 + \left(18 a + 54\right)\cdot 131^{2} + \left(121 a + 74\right)\cdot 131^{3} + \left(6 a + 125\right)\cdot 131^{4} + \left(50 a + 7\right)\cdot 131^{5} + \left(128 a + 117\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 45 + 54\cdot 131 + 46\cdot 131^{2} + 13\cdot 131^{3} + 66\cdot 131^{4} + 13\cdot 131^{5} + 72\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 46 a + 126 + \left(31 a + 90\right)\cdot 131 + \left(112 a + 76\right)\cdot 131^{2} + \left(9 a + 56\right)\cdot 131^{3} + \left(124 a + 5\right)\cdot 131^{4} + \left(80 a + 123\right)\cdot 131^{5} + \left(2 a + 13\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 85 a + 48 + \left(99 a + 39\right)\cdot 131 + \left(18 a + 101\right)\cdot 131^{2} + \left(121 a + 114\right)\cdot 131^{3} + \left(6 a + 98\right)\cdot 131^{4} + \left(50 a + 60\right)\cdot 131^{5} + \left(128 a + 74\right)\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 87 + 76\cdot 131 + 84\cdot 131^{2} + 117\cdot 131^{3} + 64\cdot 131^{4} + 117\cdot 131^{5} + 58\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(4,5)$ |
| $(1,5)$ |
| $(1,2,3)(4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,5)(2,4)(3,6)$ |
$-3$ |
| $3$ |
$2$ |
$(3,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,5)(3,6)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)(4,5)$ |
$1$ |
| $6$ |
$2$ |
$(1,2)(3,6)(4,5)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)(4,6,5)$ |
$0$ |
| $6$ |
$4$ |
$(1,3,5,6)$ |
$1$ |
| $6$ |
$4$ |
$(1,5)(2,3,4,6)$ |
$-1$ |
| $8$ |
$6$ |
$(1,2,3,5,4,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.