Properties

Label 3.2e2_211.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 211 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$844= 2^{2} \cdot 211 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 7 x^{4} + 11 x^{3} + 29 x^{2} + 10 x - 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e2_211.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18 + 7\cdot 23 + 22\cdot 23^{2} + 14\cdot 23^{3} + 19\cdot 23^{4} + 16\cdot 23^{5} + 9\cdot 23^{6} + 22\cdot 23^{7} + 6\cdot 23^{8} + 17\cdot 23^{9} + 20\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 4 + \left(20 a + 3\right)\cdot 23 + \left(3 a + 9\right)\cdot 23^{2} + \left(14 a + 11\right)\cdot 23^{3} + 4 a\cdot 23^{4} + \left(9 a + 22\right)\cdot 23^{5} + \left(7 a + 8\right)\cdot 23^{6} + 3 a\cdot 23^{7} + \left(9 a + 16\right)\cdot 23^{8} + \left(14 a + 14\right)\cdot 23^{9} + \left(2 a + 1\right)\cdot 23^{10} + \left(a + 5\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 10 + \left(2 a + 17\right)\cdot 23 + \left(19 a + 19\right)\cdot 23^{2} + \left(8 a + 12\right)\cdot 23^{3} + \left(18 a + 18\right)\cdot 23^{4} + \left(13 a + 12\right)\cdot 23^{5} + \left(15 a + 14\right)\cdot 23^{6} + \left(19 a + 22\right)\cdot 23^{7} + \left(13 a + 7\right)\cdot 23^{8} + \left(8 a + 11\right)\cdot 23^{9} + \left(20 a + 15\right)\cdot 23^{10} + \left(21 a + 4\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 8 + \left(13 a + 13\right)\cdot 23 + \left(5 a + 9\right)\cdot 23^{2} + \left(9 a + 9\right)\cdot 23^{3} + \left(11 a + 15\right)\cdot 23^{4} + \left(19 a + 21\right)\cdot 23^{5} + \left(3 a + 22\right)\cdot 23^{6} + \left(2 a + 14\right)\cdot 23^{7} + \left(16 a + 14\right)\cdot 23^{8} + \left(19 a + 3\right)\cdot 23^{9} + \left(9 a + 13\right)\cdot 23^{10} + \left(18 a + 10\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 20 + \left(9 a + 10\right)\cdot 23 + \left(17 a + 7\right)\cdot 23^{2} + \left(13 a + 22\right)\cdot 23^{3} + \left(11 a + 5\right)\cdot 23^{4} + \left(3 a + 3\right)\cdot 23^{5} + \left(19 a + 11\right)\cdot 23^{6} + \left(20 a + 15\right)\cdot 23^{7} + \left(6 a + 21\right)\cdot 23^{8} + \left(3 a + 3\right)\cdot 23^{9} + \left(13 a + 13\right)\cdot 23^{10} + \left(4 a + 14\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 12 + 16\cdot 23 + 21\cdot 23^{3} + 8\cdot 23^{4} + 15\cdot 23^{5} + 23^{6} + 16\cdot 23^{7} + 23^{8} + 18\cdot 23^{9} + 23^{10} + 14\cdot 23^{11} +O\left(23^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(4,6)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,4)(3,5)$$-3$
$3$$2$$(1,6)(2,4)$$-1$
$3$$2$$(2,4)$$1$
$6$$2$$(1,2)(4,6)$$-1$
$6$$2$$(1,6)(2,3)(4,5)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,4,6,2)$$-1$
$6$$4$$(1,6)(2,5,4,3)$$1$
$8$$6$$(1,3,2,6,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.