Properties

Label 3.2e2_19e2_23e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 19^{2} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$763876= 2^{2} \cdot 19^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 7 x^{2} - 5 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 313 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 73 + 71\cdot 313 + 308\cdot 313^{2} + 220\cdot 313^{3} + 64\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 141 + 272\cdot 313 + 259\cdot 313^{2} + 91\cdot 313^{3} + 295\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 158 + 31\cdot 313 + 41\cdot 313^{2} + 63\cdot 313^{3} + 137\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 255 + 250\cdot 313 + 16\cdot 313^{2} + 250\cdot 313^{3} + 128\cdot 313^{4} +O\left(313^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.