Properties

Label 3.2e2_19_37e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 19 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$104044= 2^{2} \cdot 19 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 11 x^{3} - 10 x^{2} - 14 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 18 + \left(25 a + 11\right)\cdot 31 + 24 a\cdot 31^{2} + \left(24 a + 1\right)\cdot 31^{3} + \left(3 a + 26\right)\cdot 31^{4} + \left(11 a + 26\right)\cdot 31^{5} + \left(19 a + 8\right)\cdot 31^{6} + 25 a\cdot 31^{7} + \left(6 a + 11\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 22 + \left(a + 20\right)\cdot 31 + \left(29 a + 19\right)\cdot 31^{2} + \left(a + 19\right)\cdot 31^{3} + \left(15 a + 12\right)\cdot 31^{4} + \left(10 a + 5\right)\cdot 31^{5} + \left(30 a + 13\right)\cdot 31^{6} + \left(6 a + 6\right)\cdot 31^{7} + \left(8 a + 12\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 + 24\cdot 31 + 13\cdot 31^{2} + 30\cdot 31^{3} + 25\cdot 31^{4} + 27\cdot 31^{5} + 2\cdot 31^{6} + 19\cdot 31^{7} + 29\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 22 + \left(5 a + 28\right)\cdot 31 + \left(6 a + 24\right)\cdot 31^{2} + \left(6 a + 25\right)\cdot 31^{3} + \left(27 a + 8\right)\cdot 31^{4} + \left(19 a + 14\right)\cdot 31^{5} + \left(11 a + 5\right)\cdot 31^{6} + \left(5 a + 1\right)\cdot 31^{7} + \left(24 a + 30\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 22 + 29\cdot 31 + 19\cdot 31^{2} + 21\cdot 31^{3} + 9\cdot 31^{4} + 7\cdot 31^{5} + 30\cdot 31^{6} + 13\cdot 31^{7} + 19\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 21 + \left(29 a + 8\right)\cdot 31 + \left(a + 14\right)\cdot 31^{2} + \left(29 a + 25\right)\cdot 31^{3} + \left(15 a + 9\right)\cdot 31^{4} + \left(20 a + 11\right)\cdot 31^{5} + 31^{6} + \left(24 a + 21\right)\cdot 31^{7} + \left(22 a + 21\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,3)(2,6,5)$
$(1,3)(2,5)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,5)(4,6)$$-3$
$3$$2$$(3,5)$$1$
$3$$2$$(1,2)(3,5)$$-1$
$6$$2$$(1,4)(2,6)$$1$
$6$$2$$(1,4)(2,6)(3,5)$$-1$
$8$$3$$(1,4,3)(2,6,5)$$0$
$6$$4$$(1,3,2,5)$$1$
$6$$4$$(1,6,2,4)(3,5)$$-1$
$8$$6$$(1,4,3,2,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.