Properties

Label 3.2e2_13e2_37.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 13^{2} \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$25012= 2^{2} \cdot 13^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 8 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 98\cdot 233 + 224\cdot 233^{2} + 90\cdot 233^{3} + 194\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 148\cdot 233 + 171\cdot 233^{2} + 85\cdot 233^{3} + 125\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 61 + 156\cdot 233 + 151\cdot 233^{2} + 139\cdot 233^{3} + 103\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 63\cdot 233 + 151\cdot 233^{2} + 149\cdot 233^{3} + 42\cdot 233^{4} +O\left(233^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.