Properties

Label 3.2e2_13_37.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 13 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1924= 2^{2} \cdot 13 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} - 2 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.13_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 13\cdot 29 + 26\cdot 29^{2} + 17\cdot 29^{3} + 7\cdot 29^{4} + 5\cdot 29^{5} + 3\cdot 29^{6} + 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 14 + 15\cdot 29 + 2\cdot 29^{2} + 11\cdot 29^{3} + 21\cdot 29^{4} + 23\cdot 29^{5} + 25\cdot 29^{6} + 27\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 1 + \left(3 a + 27\right)\cdot 29 + \left(3 a + 20\right)\cdot 29^{2} + \left(6 a + 13\right)\cdot 29^{3} + \left(5 a + 27\right)\cdot 29^{4} + \left(24 a + 11\right)\cdot 29^{5} + \left(17 a + 5\right)\cdot 29^{6} + \left(2 a + 24\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 9 + \left(25 a + 26\right)\cdot 29 + \left(25 a + 3\right)\cdot 29^{2} + \left(22 a + 12\right)\cdot 29^{3} + \left(23 a + 18\right)\cdot 29^{4} + \left(4 a + 11\right)\cdot 29^{5} + \left(11 a + 12\right)\cdot 29^{6} + \left(26 a + 19\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 10 a + \left(25 a + 2\right)\cdot 29 + \left(25 a + 8\right)\cdot 29^{2} + \left(22 a + 15\right)\cdot 29^{3} + \left(23 a + 1\right)\cdot 29^{4} + \left(4 a + 17\right)\cdot 29^{5} + \left(11 a + 23\right)\cdot 29^{6} + \left(26 a + 4\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 21 + \left(3 a + 2\right)\cdot 29 + \left(3 a + 25\right)\cdot 29^{2} + \left(6 a + 16\right)\cdot 29^{3} + \left(5 a + 10\right)\cdot 29^{4} + \left(24 a + 17\right)\cdot 29^{5} + \left(17 a + 16\right)\cdot 29^{6} + \left(2 a + 9\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,3,4)(2,5,6)$
$(1,3)(2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,5)(4,6)$$-3$
$3$$2$$(1,2)$$1$
$3$$2$$(1,2)(3,5)$$-1$
$6$$2$$(3,4)(5,6)$$1$
$6$$2$$(1,2)(3,4)(5,6)$$-1$
$8$$3$$(1,3,4)(2,5,6)$$0$
$6$$4$$(1,5,2,3)$$1$
$6$$4$$(1,2)(3,6,5,4)$$-1$
$8$$6$$(1,5,6,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.