Properties

Label 3.2e2_13_37.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 13 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1924= 2^{2} \cdot 13 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 5 x^{3} + 12 x^{2} - 8 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 + 49\cdot 59 + 38\cdot 59^{2} + 30\cdot 59^{3} + 5\cdot 59^{4} + 38\cdot 59^{5} + 54\cdot 59^{6} + 46\cdot 59^{7} + 2\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 26 + \left(46 a + 38\right)\cdot 59 + \left(19 a + 9\right)\cdot 59^{2} + \left(17 a + 1\right)\cdot 59^{3} + \left(37 a + 24\right)\cdot 59^{4} + \left(19 a + 11\right)\cdot 59^{5} + \left(2 a + 18\right)\cdot 59^{6} + \left(51 a + 25\right)\cdot 59^{7} + \left(13 a + 13\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 39 + \left(36 a + 23\right)\cdot 59 + 37 a\cdot 59^{2} + \left(38 a + 28\right)\cdot 59^{3} + 3 a\cdot 59^{4} + \left(52 a + 45\right)\cdot 59^{5} + \left(43 a + 47\right)\cdot 59^{6} + \left(46 a + 18\right)\cdot 59^{7} + \left(38 a + 21\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 10 + \left(22 a + 30\right)\cdot 59 + \left(21 a + 1\right)\cdot 59^{2} + \left(20 a + 29\right)\cdot 59^{3} + \left(55 a + 24\right)\cdot 59^{4} + \left(6 a + 34\right)\cdot 59^{5} + \left(15 a + 39\right)\cdot 59^{6} + \left(12 a + 21\right)\cdot 59^{7} + \left(20 a + 13\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 13 + 31\cdot 59 + 25\cdot 59^{2} + 30\cdot 59^{3} + 19\cdot 59^{4} + 54\cdot 59^{5} + 15\cdot 59^{6} + 49\cdot 59^{7} + 31\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 48 + \left(12 a + 3\right)\cdot 59 + \left(39 a + 42\right)\cdot 59^{2} + \left(41 a + 57\right)\cdot 59^{3} + \left(21 a + 43\right)\cdot 59^{4} + \left(39 a + 52\right)\cdot 59^{5} + 56 a\cdot 59^{6} + \left(7 a + 15\right)\cdot 59^{7} + \left(45 a + 35\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(3,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(2,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(2,3,4,6)$ $-1$
$6$ $4$ $(1,4,5,2)(3,6)$ $1$
$8$ $6$ $(1,3,4,5,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.