Properties

Label 3.2e2_1229.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 1229 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4916= 2^{2} \cdot 1229 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 17 x^{4} + 6 x^{3} - 7 x^{2} + 73 x + 481 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 25\cdot 71 + 16\cdot 71^{2} + 63\cdot 71^{3} + 50\cdot 71^{4} + 56\cdot 71^{5} + 50\cdot 71^{6} + 33\cdot 71^{7} + 52\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 51 + \left(22 a + 9\right)\cdot 71 + \left(25 a + 32\right)\cdot 71^{2} + \left(7 a + 51\right)\cdot 71^{3} + \left(48 a + 4\right)\cdot 71^{4} + \left(9 a + 70\right)\cdot 71^{5} + \left(70 a + 49\right)\cdot 71^{6} + \left(35 a + 67\right)\cdot 71^{7} + \left(66 a + 21\right)\cdot 71^{8} + \left(44 a + 45\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 44 + \left(17 a + 56\right)\cdot 71 + \left(32 a + 65\right)\cdot 71^{2} + \left(5 a + 37\right)\cdot 71^{3} + \left(58 a + 55\right)\cdot 71^{4} + \left(31 a + 8\right)\cdot 71^{5} + \left(70 a + 9\right)\cdot 71^{6} + \left(32 a + 28\right)\cdot 71^{7} + \left(54 a + 12\right)\cdot 71^{8} + \left(26 a + 11\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 20 + 14\cdot 71 + 67\cdot 71^{2} + 2\cdot 71^{3} + 55\cdot 71^{4} + 21\cdot 71^{5} + 17\cdot 71^{6} + 61\cdot 71^{7} + 41\cdot 71^{8} + 25\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 68 a + 50 + \left(53 a + 16\right)\cdot 71 + \left(38 a + 42\right)\cdot 71^{2} + \left(65 a + 16\right)\cdot 71^{3} + \left(12 a + 24\right)\cdot 71^{4} + \left(39 a + 14\right)\cdot 71^{5} + 47\cdot 71^{6} + \left(38 a + 23\right)\cdot 71^{7} + \left(16 a + 17\right)\cdot 71^{8} + \left(44 a + 10\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 50 + \left(48 a + 19\right)\cdot 71 + \left(45 a + 60\right)\cdot 71^{2} + \left(63 a + 40\right)\cdot 71^{3} + \left(22 a + 22\right)\cdot 71^{4} + \left(61 a + 41\right)\cdot 71^{5} + 38\cdot 71^{6} + \left(35 a + 69\right)\cdot 71^{7} + \left(4 a + 47\right)\cdot 71^{8} + \left(26 a + 68\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)(3,4,6)$
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-3$
$3$ $2$ $(5,6)$ $1$
$3$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,5,2)(3,4,6)$ $0$
$6$ $4$ $(2,5,3,6)$ $-1$
$6$ $4$ $(1,4)(2,5,3,6)$ $1$
$8$ $6$ $(1,5,3,4,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.