Properties

Label 3.2e2_11e2_47.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 11^{2} \cdot 47 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$22748= 2^{2} \cdot 11^{2} \cdot 47 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} + x^{3} - 6 x^{2} + 9 x - 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 2\cdot 13 + 6\cdot 13^{2} + 11\cdot 13^{3} + 7\cdot 13^{4} + 13^{6} + 9\cdot 13^{7} + 3\cdot 13^{8} + 5\cdot 13^{9} + 3\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 4 + \left(12 a + 7\right)\cdot 13 + \left(6 a + 7\right)\cdot 13^{2} + \left(12 a + 2\right)\cdot 13^{3} + \left(a + 8\right)\cdot 13^{4} + \left(8 a + 4\right)\cdot 13^{5} + \left(4 a + 1\right)\cdot 13^{6} + \left(2 a + 11\right)\cdot 13^{7} + \left(10 a + 5\right)\cdot 13^{8} + \left(a + 7\right)\cdot 13^{9} +O\left(13^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 6 + \left(3 a + 10\right)\cdot 13 + \left(3 a + 4\right)\cdot 13^{2} + \left(6 a + 2\right)\cdot 13^{3} + \left(6 a + 8\right)\cdot 13^{4} + \left(2 a + 3\right)\cdot 13^{5} + \left(a + 6\right)\cdot 13^{6} + \left(2 a + 10\right)\cdot 13^{7} + \left(7 a + 7\right)\cdot 13^{8} + 3 a\cdot 13^{9} + \left(2 a + 12\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 11 + 12\cdot 13 + \left(6 a + 1\right)\cdot 13^{2} + 8\cdot 13^{3} + \left(11 a + 10\right)\cdot 13^{4} + \left(4 a + 10\right)\cdot 13^{5} + \left(8 a + 10\right)\cdot 13^{6} + \left(10 a + 8\right)\cdot 13^{7} + 2 a\cdot 13^{8} + \left(11 a + 12\right)\cdot 13^{9} + \left(12 a + 11\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 9 + 7\cdot 13 + 9\cdot 13^{3} + 8\cdot 13^{4} + 6\cdot 13^{5} + 13^{6} + 13^{7} + 8\cdot 13^{8} + 3\cdot 13^{9} +O\left(13^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 8 + \left(9 a + 11\right)\cdot 13 + \left(9 a + 4\right)\cdot 13^{2} + \left(6 a + 5\right)\cdot 13^{3} + \left(6 a + 8\right)\cdot 13^{4} + \left(10 a + 12\right)\cdot 13^{5} + \left(11 a + 4\right)\cdot 13^{6} + \left(10 a + 11\right)\cdot 13^{7} + \left(5 a + 12\right)\cdot 13^{8} + \left(9 a + 9\right)\cdot 13^{9} + \left(10 a + 10\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(5,6)$
$(1,3,2)(4,6,5)$
$(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-3$
$3$ $2$ $(1,5)(2,6)$ $-1$
$3$ $2$ $(2,6)$ $1$
$6$ $2$ $(1,2)(5,6)$ $1$
$6$ $2$ $(1,5)(2,3)(4,6)$ $-1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,6,5,2)$ $1$
$6$ $4$ $(1,5)(2,4,6,3)$ $-1$
$8$ $6$ $(1,3,2,5,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.