Properties

Label 3.2e2_11_47.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 11 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$2068= 2^{2} \cdot 11 \cdot 47 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + x^{3} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.11_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 25 + \left(30 a + 50\right)\cdot 53 + \left(31 a + 50\right)\cdot 53^{2} + \left(35 a + 50\right)\cdot 53^{3} + \left(29 a + 9\right)\cdot 53^{4} + \left(10 a + 45\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 + 24\cdot 53 + 20\cdot 53^{2} + 44\cdot 53^{3} + 26\cdot 53^{4} + 9\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 3 + \left(35 a + 27\right)\cdot 53 + \left(11 a + 37\right)\cdot 53^{2} + \left(50 a + 49\right)\cdot 53^{3} + \left(46 a + 11\right)\cdot 53^{4} + \left(10 a + 36\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 18 + \left(17 a + 45\right)\cdot 53 + \left(41 a + 48\right)\cdot 53^{2} + \left(2 a + 26\right)\cdot 53^{3} + \left(6 a + 43\right)\cdot 53^{4} + \left(42 a + 32\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 51 + 3\cdot 53 + 13\cdot 53^{2} + 37\cdot 53^{3} + 26\cdot 53^{4} + 30\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 41 + \left(22 a + 7\right)\cdot 53 + \left(21 a + 41\right)\cdot 53^{2} + \left(17 a + 2\right)\cdot 53^{3} + \left(23 a + 40\right)\cdot 53^{4} + \left(42 a + 4\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(5,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)(2,5)$$-1$
$3$$2$$(2,5)$$1$
$6$$2$$(1,2)(5,6)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(1,5,6,2)$$1$
$6$$4$$(1,6)(2,4,5,3)$$-1$
$8$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.