Properties

Label 3.2e2_11_43e2.9t20.3c2
Dimension 3
Group $C_3 \wr S_3 $
Conductor $ 2^{2} \cdot 11 \cdot 43^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr S_3 $
Conductor:$81356= 2^{2} \cdot 11 \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} + x^{7} - 2 x^{6} + 2 x^{5} + x^{4} - 5 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3 \wr S_3 $
Parity: Odd
Determinant: 1.11_43.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 18.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 31 a^{2} + 42 a + 35 + \left(10 a^{2} + a + 42\right)\cdot 47 + \left(32 a^{2} + 35 a + 33\right)\cdot 47^{2} + \left(11 a^{2} + 19 a + 7\right)\cdot 47^{3} + \left(a^{2} + 24 a + 24\right)\cdot 47^{4} + \left(45 a^{2} + 37 a + 46\right)\cdot 47^{5} + \left(4 a^{2} + 9 a + 30\right)\cdot 47^{6} + \left(25 a^{2} + 9 a + 3\right)\cdot 47^{7} + \left(41 a^{2} + 22 a + 32\right)\cdot 47^{8} + \left(17 a^{2} + 24 a + 23\right)\cdot 47^{9} + \left(15 a^{2} + 29 a + 32\right)\cdot 47^{10} + \left(42 a^{2} + 30 a + 15\right)\cdot 47^{11} + \left(28 a^{2} + 30 a + 38\right)\cdot 47^{12} + \left(21 a^{2} + 17 a + 6\right)\cdot 47^{13} + \left(10 a^{2} + 44 a + 11\right)\cdot 47^{14} + \left(12 a^{2} + 46 a + 20\right)\cdot 47^{15} + \left(5 a^{2} + 27 a + 24\right)\cdot 47^{16} + \left(7 a^{2} + 10 a\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 21 a^{2} + 2 a + \left(29 a^{2} + 23 a + 8\right)\cdot 47 + \left(44 a^{2} + 32 a + 19\right)\cdot 47^{2} + \left(5 a^{2} + 3 a + 8\right)\cdot 47^{3} + \left(18 a^{2} + 14 a + 2\right)\cdot 47^{4} + \left(2 a^{2} + 33 a + 3\right)\cdot 47^{5} + \left(26 a^{2} + 8 a + 11\right)\cdot 47^{6} + \left(12 a^{2} + a + 24\right)\cdot 47^{7} + \left(a^{2} + 40 a + 42\right)\cdot 47^{8} + \left(19 a^{2} + 37 a + 21\right)\cdot 47^{9} + \left(5 a^{2} + 6 a + 32\right)\cdot 47^{10} + \left(12 a^{2} + 31 a + 16\right)\cdot 47^{11} + \left(46 a^{2} + 18 a + 31\right)\cdot 47^{12} + \left(37 a^{2} + 24 a + 36\right)\cdot 47^{13} + \left(30 a^{2} + 35 a + 40\right)\cdot 47^{14} + \left(45 a^{2} + 5 a + 34\right)\cdot 47^{15} + \left(16 a^{2} + 34 a + 9\right)\cdot 47^{16} + \left(44 a^{2} + 38 a + 35\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 15 a^{2} + 11 a + 35 + \left(27 a^{2} + 17 a + 3\right)\cdot 47 + \left(12 a^{2} + 37 a + 2\right)\cdot 47^{2} + \left(20 a^{2} + 6 a + 37\right)\cdot 47^{3} + \left(2 a^{2} + a + 17\right)\cdot 47^{4} + \left(10 a^{2} + 35 a + 18\right)\cdot 47^{5} + \left(28 a^{2} + 8 a + 15\right)\cdot 47^{6} + \left(38 a^{2} + 44 a + 29\right)\cdot 47^{7} + \left(3 a^{2} + 26 a\right)\cdot 47^{8} + \left(17 a^{2} + 38 a + 18\right)\cdot 47^{9} + \left(43 a^{2} + 26 a + 14\right)\cdot 47^{10} + \left(15 a^{2} + 27 a + 24\right)\cdot 47^{11} + \left(24 a^{2} + 21 a + 34\right)\cdot 47^{12} + \left(24 a^{2} + 40 a + 9\right)\cdot 47^{13} + \left(21 a^{2} + 40 a + 22\right)\cdot 47^{14} + \left(28 a^{2} + 11 a\right)\cdot 47^{15} + \left(35 a^{2} + 23 a\right)\cdot 47^{16} + \left(26 a^{2} + 7 a\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 11 a^{2} + 34 a + 27 + \left(37 a^{2} + 6 a + 23\right)\cdot 47 + \left(36 a^{2} + 24 a + 3\right)\cdot 47^{2} + \left(20 a^{2} + 36 a + 38\right)\cdot 47^{3} + \left(26 a^{2} + 31 a + 18\right)\cdot 47^{4} + \left(34 a^{2} + 25 a + 20\right)\cdot 47^{5} + \left(39 a^{2} + 29 a + 38\right)\cdot 47^{6} + \left(42 a^{2} + a + 37\right)\cdot 47^{7} + \left(41 a^{2} + 27 a + 29\right)\cdot 47^{8} + \left(10 a^{2} + 17 a + 5\right)\cdot 47^{9} + \left(45 a^{2} + 13 a + 18\right)\cdot 47^{10} + \left(18 a^{2} + 35 a + 30\right)\cdot 47^{11} + \left(23 a^{2} + 6 a + 32\right)\cdot 47^{12} + \left(31 a^{2} + 29 a + 23\right)\cdot 47^{13} + \left(41 a^{2} + 17 a + 15\right)\cdot 47^{14} + \left(19 a^{2} + 29 a + 30\right)\cdot 47^{15} + \left(41 a^{2} + 36 a + 11\right)\cdot 47^{16} + \left(22 a^{2} + 39\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 5 }$ $=$ $ 35 a^{2} + 2 a + 43 + \left(26 a^{2} + 31 a + 27\right)\cdot 47 + \left(12 a^{2} + 19 a + 41\right)\cdot 47^{2} + \left(31 a^{2} + 45 a + 46\right)\cdot 47^{3} + \left(43 a^{2} + 17 a + 14\right)\cdot 47^{4} + \left(36 a^{2} + 32 a + 30\right)\cdot 47^{5} + \left(7 a^{2} + 23 a + 36\right)\cdot 47^{6} + \left(28 a^{2} + 20 a + 9\right)\cdot 47^{7} + \left(13 a^{2} + 5 a + 23\right)\cdot 47^{8} + \left(4 a^{2} + 31 a + 43\right)\cdot 47^{9} + \left(21 a^{2} + 30 a + 43\right)\cdot 47^{10} + \left(4 a^{2} + 33 a + 33\right)\cdot 47^{11} + \left(9 a^{2} + 23 a + 45\right)\cdot 47^{12} + \left(9 a^{2} + 34 a + 28\right)\cdot 47^{13} + \left(2 a^{2} + 28 a + 41\right)\cdot 47^{14} + \left(17 a^{2} + 28 a + 29\right)\cdot 47^{15} + \left(21 a^{2} + 12 a + 9\right)\cdot 47^{16} + \left(18 a^{2} + 46 a + 23\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 10 + 25\cdot 47 + 17\cdot 47^{2} + 35\cdot 47^{3} + 13\cdot 47^{4} + 46\cdot 47^{5} + 24\cdot 47^{6} + 22\cdot 47^{7} + 8\cdot 47^{8} + 7\cdot 47^{9} + 36\cdot 47^{10} + 37\cdot 47^{11} + 47^{12} + 17\cdot 47^{13} + 44\cdot 47^{14} + 7\cdot 47^{15} + 4\cdot 47^{16} + 29\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 7 }$ $=$ $ 28 + 38\cdot 47 + 41\cdot 47^{2} + 38\cdot 47^{3} + 2\cdot 47^{4} + 45\cdot 47^{5} + 13\cdot 47^{6} + 44\cdot 47^{7} + 38\cdot 47^{8} + 41\cdot 47^{9} + 22\cdot 47^{10} + 32\cdot 47^{11} + 13\cdot 47^{12} + 11\cdot 47^{13} + 17\cdot 47^{14} + 13\cdot 47^{15} + 26\cdot 47^{16} + 29\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 8 }$ $=$ $ 29 + 24\cdot 47 + 7\cdot 47^{2} + 30\cdot 47^{3} + 20\cdot 47^{4} + 44\cdot 47^{5} + 20\cdot 47^{6} + 28\cdot 47^{7} + 32\cdot 47^{8} + 35\cdot 47^{9} + 11\cdot 47^{10} + 18\cdot 47^{11} + 38\cdot 47^{12} + 10\cdot 47^{13} + 30\cdot 47^{14} + 19\cdot 47^{15} + 2\cdot 47^{17} +O\left(47^{ 18 }\right)$
$r_{ 9 }$ $=$ $ 28 a^{2} + 3 a + 29 + \left(9 a^{2} + 14 a + 40\right)\cdot 47 + \left(2 a^{2} + 39 a + 20\right)\cdot 47^{2} + \left(4 a^{2} + 28 a + 39\right)\cdot 47^{3} + \left(2 a^{2} + 4 a + 25\right)\cdot 47^{4} + \left(12 a^{2} + 24 a + 27\right)\cdot 47^{5} + \left(34 a^{2} + 13 a + 42\right)\cdot 47^{6} + \left(40 a^{2} + 17 a + 34\right)\cdot 47^{7} + \left(38 a^{2} + 19 a + 26\right)\cdot 47^{8} + \left(24 a^{2} + 38 a + 37\right)\cdot 47^{9} + \left(10 a^{2} + 33 a + 22\right)\cdot 47^{10} + \left(29 a + 25\right)\cdot 47^{11} + \left(9 a^{2} + 39 a + 45\right)\cdot 47^{12} + \left(16 a^{2} + 41 a + 42\right)\cdot 47^{13} + \left(34 a^{2} + 20 a + 11\right)\cdot 47^{14} + \left(17 a^{2} + 18 a + 31\right)\cdot 47^{15} + \left(20 a^{2} + 6 a + 7\right)\cdot 47^{16} + \left(21 a^{2} + 37 a + 29\right)\cdot 47^{17} +O\left(47^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,9)$
$(1,9,5)(2,8,3,7,4,6)$
$(1,9,5)(2,3,4)$
$(1,9,5)(2,3,4)(6,8,7)$
$(1,4)(2,9)(3,5)(6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,7)(3,6)(4,8)$$1$
$1$$3$$(1,9,5)(2,3,4)(6,8,7)$$3 \zeta_{3}$
$1$$3$$(1,5,9)(2,4,3)(6,7,8)$$-3 \zeta_{3} - 3$
$3$$3$$(1,5,9)(2,3,4)(6,8,7)$$\zeta_{3} + 2$
$3$$3$$(1,9,5)(2,4,3)(6,7,8)$$-\zeta_{3} + 1$
$3$$3$$(1,9,5)(2,3,4)$$-\zeta_{3} - 2$
$3$$3$$(1,5,9)(2,4,3)$$\zeta_{3} - 1$
$3$$3$$(6,7,8)$$2 \zeta_{3} + 1$
$3$$3$$(6,8,7)$$-2 \zeta_{3} - 1$
$6$$3$$(1,9,5)(2,4,3)$$0$
$18$$3$$(1,2,7)(3,6,9)(4,8,5)$$0$
$9$$6$$(1,9,5)(2,8,3,7,4,6)$$-\zeta_{3} - 1$
$9$$6$$(1,5,9)(2,6,4,7,3,8)$$\zeta_{3}$
$9$$6$$(1,3,9,4,5,2)$$-\zeta_{3} - 1$
$9$$6$$(1,2,5,4,9,3)$$\zeta_{3}$
$9$$6$$(1,4)(2,9)(3,5)(6,8,7)$$1$
$9$$6$$(1,4)(2,9)(3,5)(6,7,8)$$1$
$9$$6$$(1,7,5,8,9,6)(2,3,4)$$\zeta_{3}$
$9$$6$$(1,6,9,8,5,7)(2,4,3)$$-\zeta_{3} - 1$
$18$$9$$(1,3,7,5,2,8,9,4,6)$$0$
$18$$9$$(1,7,2,9,6,3,5,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.