Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32 + 160\cdot 269 + 246\cdot 269^{2} + 240\cdot 269^{3} + 250\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 81 + 147\cdot 269 + 114\cdot 269^{2} + 11\cdot 269^{3} + 210\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 172 + 27\cdot 269 + 173\cdot 269^{2} + 182\cdot 269^{3} + 158\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 254 + 202\cdot 269 + 3\cdot 269^{2} + 103\cdot 269^{3} + 187\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.