Properties

Label 3.2e2_11_29.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 11 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1276= 2^{2} \cdot 11 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} - x^{3} - 4 x^{2} + 4 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 8 + \left(25 a + 13\right)\cdot 41 + \left(22 a + 37\right)\cdot 41^{2} + \left(24 a + 20\right)\cdot 41^{3} + \left(18 a + 36\right)\cdot 41^{4} + \left(38 a + 40\right)\cdot 41^{5} + \left(26 a + 6\right)\cdot 41^{6} + \left(12 a + 38\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 40 + \left(15 a + 11\right)\cdot 41 + \left(18 a + 38\right)\cdot 41^{2} + \left(16 a + 30\right)\cdot 41^{3} + \left(22 a + 26\right)\cdot 41^{4} + \left(2 a + 14\right)\cdot 41^{5} + \left(14 a + 8\right)\cdot 41^{6} + \left(28 a + 8\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 34 + \left(15 a + 27\right)\cdot 41 + \left(18 a + 3\right)\cdot 41^{2} + \left(16 a + 20\right)\cdot 41^{3} + \left(22 a + 4\right)\cdot 41^{4} + 2 a\cdot 41^{5} + \left(14 a + 34\right)\cdot 41^{6} + \left(28 a + 2\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 30 + 25\cdot 41 + 33\cdot 41^{2} + 17\cdot 41^{3} + 12\cdot 41^{4} + 35\cdot 41^{5} + 3\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 + 15\cdot 41 + 7\cdot 41^{2} + 23\cdot 41^{3} + 28\cdot 41^{4} + 5\cdot 41^{5} + 40\cdot 41^{6} + 37\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 38 a + 2 + \left(25 a + 29\right)\cdot 41 + \left(22 a + 2\right)\cdot 41^{2} + \left(24 a + 10\right)\cdot 41^{3} + \left(18 a + 14\right)\cdot 41^{4} + \left(38 a + 26\right)\cdot 41^{5} + \left(26 a + 32\right)\cdot 41^{6} + \left(12 a + 32\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(4,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(4,5)$ $-1$
$6$ $2$ $(2,4)(5,6)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,5,3,4)$ $-1$
$6$ $4$ $(1,6,3,2)(4,5)$ $1$
$8$ $6$ $(1,5,6,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.