Properties

Label 3.2e2_11_17e2.9t12.2c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 11 \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$12716= 2^{2} \cdot 11 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 5 x^{7} + 4 x^{6} + 10 x^{5} - x^{4} - 25 x^{3} + 23 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 2 a^{2} + 32 a + 24 + \left(24 a^{2} + 30 a + 22\right)\cdot 47 + \left(19 a^{2} + 36 a + 8\right)\cdot 47^{2} + \left(18 a^{2} + 28 a + 21\right)\cdot 47^{3} + \left(21 a^{2} + 34 a + 17\right)\cdot 47^{4} + \left(33 a^{2} + 27 a + 23\right)\cdot 47^{5} + \left(3 a^{2} + 41 a + 28\right)\cdot 47^{6} + \left(44 a^{2} + 19 a + 41\right)\cdot 47^{7} + \left(30 a^{2} + 5 a + 10\right)\cdot 47^{8} + \left(44 a^{2} + a + 30\right)\cdot 47^{9} + \left(26 a^{2} + 36 a + 8\right)\cdot 47^{10} + \left(5 a^{2} + 36\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 21 + 11\cdot 47 + 42\cdot 47^{2} + 25\cdot 47^{3} + 19\cdot 47^{4} + 43\cdot 47^{5} + 42\cdot 47^{6} + 15\cdot 47^{7} + 46\cdot 47^{8} + 8\cdot 47^{10} + 44\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 43 a^{2} + 36 a + 44 + \left(31 a^{2} + 23 a + 12\right)\cdot 47 + \left(6 a^{2} + 26 a + 37\right)\cdot 47^{2} + \left(14 a^{2} + 31 a + 24\right)\cdot 47^{3} + \left(7 a^{2} + 16 a + 27\right)\cdot 47^{4} + \left(27 a^{2} + 18 a + 5\right)\cdot 47^{5} + \left(10 a^{2} + 44 a + 27\right)\cdot 47^{6} + \left(22 a^{2} + 20 a + 43\right)\cdot 47^{7} + \left(3 a^{2} + 13 a + 46\right)\cdot 47^{8} + \left(25 a^{2} + 39 a + 33\right)\cdot 47^{9} + \left(24 a^{2} + 36 a + 23\right)\cdot 47^{10} + \left(15 a^{2} + 17 a + 23\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 35 a^{2} + 11 a + 28 + \left(31 a^{2} + 22 a + 12\right)\cdot 47 + \left(14 a^{2} + 45 a + 6\right)\cdot 47^{2} + \left(11 a + 44\right)\cdot 47^{3} + \left(20 a^{2} + 17 a + 5\right)\cdot 47^{4} + \left(18 a^{2} + 6 a + 35\right)\cdot 47^{5} + \left(a^{2} + 39 a + 8\right)\cdot 47^{6} + \left(39 a^{2} + 6 a + 30\right)\cdot 47^{7} + \left(10 a^{2} + 45 a + 14\right)\cdot 47^{8} + \left(38 a^{2} + 39 a + 13\right)\cdot 47^{9} + \left(11 a^{2} + 41 a + 45\right)\cdot 47^{10} + \left(33 a^{2} + 6 a + 11\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 39 + 33\cdot 47 + 13\cdot 47^{2} + 5\cdot 47^{3} + 45\cdot 47^{4} + 46\cdot 47^{5} + 42\cdot 47^{7} + 8\cdot 47^{8} + 32\cdot 47^{9} + 17\cdot 47^{10} + 39\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 7 + 43\cdot 47 + 10\cdot 47^{2} + 26\cdot 47^{3} + 19\cdot 47^{4} + 45\cdot 47^{5} + 15\cdot 47^{6} + 37\cdot 47^{7} + 24\cdot 47^{8} + 4\cdot 47^{9} + 45\cdot 47^{10} + 4\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 4 a + 22 + \left(11 a^{2} + 23 a + 43\right)\cdot 47 + \left(11 a^{2} + 38\right)\cdot 47^{2} + \left(34 a^{2} + 41 a + 5\right)\cdot 47^{3} + \left(28 a + 23\right)\cdot 47^{4} + \left(2 a^{2} + 16 a + 7\right)\cdot 47^{5} + \left(14 a^{2} + 29 a + 2\right)\cdot 47^{6} + \left(10 a^{2} + 4 a + 21\right)\cdot 47^{7} + \left(14 a^{2} + 42 a + 24\right)\cdot 47^{8} + \left(16 a^{2} + 2 a + 20\right)\cdot 47^{9} + \left(30 a^{2} + 16 a + 15\right)\cdot 47^{10} + \left(40 a^{2} + 44 a + 12\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{2} + 37 + \left(30 a^{2} + a + 9\right)\cdot 47 + \left(25 a^{2} + 22 a + 28\right)\cdot 47^{2} + \left(32 a^{2} + 3 a + 14\right)\cdot 47^{3} + \left(19 a^{2} + 13 a + 5\right)\cdot 47^{4} + \left(a^{2} + 22 a + 1\right)\cdot 47^{5} + \left(35 a^{2} + 10 a + 29\right)\cdot 47^{6} + \left(32 a^{2} + 19 a + 17\right)\cdot 47^{7} + \left(32 a^{2} + 35 a + 11\right)\cdot 47^{8} + \left(30 a^{2} + 14 a + 45\right)\cdot 47^{9} + \left(10 a^{2} + 15 a + 42\right)\cdot 47^{10} + \left(45 a^{2} + 22 a + 35\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 44 a^{2} + 11 a + 14 + \left(11 a^{2} + 40 a + 45\right)\cdot 47 + \left(16 a^{2} + 9 a + 1\right)\cdot 47^{2} + \left(41 a^{2} + 24 a + 20\right)\cdot 47^{3} + \left(24 a^{2} + 30 a + 24\right)\cdot 47^{4} + \left(11 a^{2} + 2 a + 26\right)\cdot 47^{5} + \left(29 a^{2} + 23 a + 32\right)\cdot 47^{6} + \left(39 a^{2} + 22 a + 32\right)\cdot 47^{7} + \left(a^{2} + 46 a + 46\right)\cdot 47^{8} + \left(33 a^{2} + 42 a + 6\right)\cdot 47^{9} + \left(36 a^{2} + 41 a + 28\right)\cdot 47^{10} + \left(a + 26\right)\cdot 47^{11} +O\left(47^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,5)(2,9,4)(6,7,8)$
$(2,4)(3,5)(6,8)$
$(1,7,9)(2,5,6)(3,8,4)$
$(2,6,5)(3,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,4)(3,5)(6,8)$$1$
$1$$3$$(1,7,9)(2,5,6)(3,8,4)$$-3 \zeta_{3} - 3$
$1$$3$$(1,9,7)(2,6,5)(3,4,8)$$3 \zeta_{3}$
$6$$3$$(1,3,5)(2,9,4)(6,7,8)$$0$
$6$$3$$(1,8,5)(2,9,3)(4,6,7)$$0$
$6$$3$$(1,4,5)(2,9,8)(3,6,7)$$0$
$6$$3$$(2,6,5)(3,8,4)$$0$
$9$$6$$(1,7,9)(2,3,6,4,5,8)$$-\zeta_{3} - 1$
$9$$6$$(1,9,7)(2,8,5,4,6,3)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.