Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 397 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 146 + 57\cdot 397 + 341\cdot 397^{2} + 89\cdot 397^{3} + 159\cdot 397^{4} +O\left(397^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 189 + 379\cdot 397 + 110\cdot 397^{2} + 46\cdot 397^{3} + 4\cdot 397^{4} +O\left(397^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 196 + 33\cdot 397 + 49\cdot 397^{2} + 385\cdot 397^{3} + 250\cdot 397^{4} +O\left(397^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 264 + 323\cdot 397 + 292\cdot 397^{2} + 272\cdot 397^{3} + 379\cdot 397^{4} +O\left(397^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.