Properties

Label 3.2e2_1187e2.18t24.2c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 1187^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$5635876= 2^{2} \cdot 1187^{2} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 7 x^{7} - 8 x^{6} + 4 x^{5} + 5 x^{4} - 13 x^{3} + 11 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 11 + 4\cdot 11^{2} + 3\cdot 11^{3} + 9\cdot 11^{4} + 2\cdot 11^{5} + 3\cdot 11^{6} + 9\cdot 11^{7} + 5\cdot 11^{8} + 2\cdot 11^{9} + 8\cdot 11^{10} + 11^{11} + 2\cdot 11^{12} + 2\cdot 11^{13} + 4\cdot 11^{14} + 4\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 2 }$ $=$ $ a + 10 + \left(8 a^{2} + a\right)\cdot 11 + \left(6 a^{2} + 3 a + 3\right)\cdot 11^{2} + \left(4 a^{2} + a + 3\right)\cdot 11^{3} + \left(7 a^{2} + 7 a + 7\right)\cdot 11^{4} + \left(10 a^{2} + 3 a + 2\right)\cdot 11^{5} + \left(2 a^{2} + 2 a + 10\right)\cdot 11^{6} + \left(6 a^{2} + 4 a + 1\right)\cdot 11^{7} + \left(5 a^{2} + 4 a + 10\right)\cdot 11^{8} + \left(5 a + 10\right)\cdot 11^{9} + \left(a^{2} + 4 a + 6\right)\cdot 11^{10} + \left(a^{2} + 5 a\right)\cdot 11^{11} + \left(6 a^{2} + a + 3\right)\cdot 11^{12} + \left(10 a^{2} + 2 a + 8\right)\cdot 11^{13} + \left(8 a^{2} + 8 a + 10\right)\cdot 11^{14} + \left(a^{2} + 10 a + 4\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 10 a + 2 + 11 + \left(9 a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 2 a + 2\right)\cdot 11^{3} + \left(7 a^{2} + 7 a\right)\cdot 11^{4} + \left(5 a^{2} + 7 a + 9\right)\cdot 11^{5} + \left(10 a^{2} + 2 a + 10\right)\cdot 11^{6} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{7} + \left(2 a^{2} + 10 a + 5\right)\cdot 11^{8} + \left(7 a^{2} + 10 a + 4\right)\cdot 11^{9} + \left(6 a^{2} + 3 a + 4\right)\cdot 11^{10} + \left(4 a^{2} + 10 a + 10\right)\cdot 11^{11} + \left(8 a^{2} + 7 a + 7\right)\cdot 11^{12} + \left(10 a^{2} + 9 a + 5\right)\cdot 11^{13} + \left(a^{2} + 5 a + 2\right)\cdot 11^{14} + \left(4 a^{2} + 2 a + 7\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 9 a + 5 + \left(3 a^{2} + 9 a + 6\right)\cdot 11 + \left(2 a^{2} + a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 10 a + 10\right)\cdot 11^{3} + \left(9 a^{2} + 10 a + 2\right)\cdot 11^{4} + \left(4 a^{2} + 2\right)\cdot 11^{5} + \left(3 a^{2} + 7 a + 7\right)\cdot 11^{6} + \left(7 a^{2} + 5 a + 10\right)\cdot 11^{7} + \left(6 a^{2} + 9 a + 7\right)\cdot 11^{8} + \left(10 a^{2} + 2 a + 9\right)\cdot 11^{9} + \left(3 a^{2} + 10 a + 10\right)\cdot 11^{10} + \left(10 a^{2} + 8 a + 1\right)\cdot 11^{11} + \left(7 a^{2} + 3 a + 9\right)\cdot 11^{12} + \left(9 a^{2} + 5 a + 10\right)\cdot 11^{13} + \left(7 a^{2} + 8 a + 1\right)\cdot 11^{14} + \left(9 a^{2} + a + 8\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 10 + 8\cdot 11 + 4\cdot 11^{3} + 8\cdot 11^{4} + 3\cdot 11^{5} + 8\cdot 11^{6} + 4\cdot 11^{7} + 4\cdot 11^{8} + 11^{9} + 6\cdot 11^{10} + 6\cdot 11^{11} + 4\cdot 11^{12} + 4\cdot 11^{13} + 2\cdot 11^{14} + 8\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + a + 7 + \left(9 a^{2} + 3 a + 9\right)\cdot 11 + \left(a^{2} + 8 a + 10\right)\cdot 11^{2} + \left(7 a^{2} + 9 a + 8\right)\cdot 11^{3} + \left(5 a^{2} + 9 a + 8\right)\cdot 11^{4} + \left(9 a^{2} + 4 a + 6\right)\cdot 11^{5} + \left(a^{2} + 7 a + 6\right)\cdot 11^{6} + \left(3 a^{2} + 5 a + 3\right)\cdot 11^{7} + \left(3 a^{2} + 7 a + 2\right)\cdot 11^{8} + \left(4 a^{2} + 5 a + 4\right)\cdot 11^{9} + \left(a^{2} + 10 a + 8\right)\cdot 11^{10} + \left(3 a^{2} + 10 a + 4\right)\cdot 11^{11} + \left(10 a^{2} + 4 a + 10\right)\cdot 11^{12} + \left(a^{2} + 10 a + 4\right)\cdot 11^{13} + \left(3 a^{2} + 9 a\right)\cdot 11^{14} + \left(a^{2} + 2 a + 7\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 2 + \left(7 a + 1\right)\cdot 11 + \left(8 a + 1\right)\cdot 11^{2} + \left(10 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(8 a^{2} + 4 a + 5\right)\cdot 11^{4} + \left(6 a^{2} + 9 a + 10\right)\cdot 11^{5} + \left(9 a^{2} + 5\right)\cdot 11^{6} + \left(9 a^{2} + 7 a + 1\right)\cdot 11^{7} + \left(4 a^{2} + 3 a + 8\right)\cdot 11^{8} + \left(10 a^{2} + 5 a + 8\right)\cdot 11^{9} + \left(2 a^{2} + 7 a + 6\right)\cdot 11^{10} + \left(3 a^{2} + 8\right)\cdot 11^{11} + \left(3 a^{2} + 9 a + 4\right)\cdot 11^{12} + \left(9 a^{2} + a + 7\right)\cdot 11^{13} + \left(5 a^{2} + 6 a + 7\right)\cdot 11^{14} + \left(5 a^{2} + 5 a + 1\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + a + 4 + \left(10 a^{2} + 7\right)\cdot 11 + \left(a^{2} + 6 a + 7\right)\cdot 11^{2} + \left(10 a^{2} + 10 a + 10\right)\cdot 11^{3} + \left(4 a^{2} + 3 a + 3\right)\cdot 11^{4} + \left(6 a^{2} + 6 a + 4\right)\cdot 11^{5} + \left(4 a^{2} + a + 1\right)\cdot 11^{6} + \left(8 a^{2} + a + 1\right)\cdot 11^{7} + \left(9 a^{2} + 8 a + 1\right)\cdot 11^{8} + \left(10 a^{2} + 2 a + 10\right)\cdot 11^{9} + \left(5 a^{2} + 7 a + 9\right)\cdot 11^{10} + \left(10 a^{2} + 7 a + 5\right)\cdot 11^{11} + \left(7 a^{2} + 5 a + 5\right)\cdot 11^{12} + \left(a^{2} + 3 a + 7\right)\cdot 11^{13} + \left(5 a^{2} + 5 a + 5\right)\cdot 11^{14} + \left(10 a^{2} + 9 a + 5\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$
$r_{ 9 }$ $=$ $ 6 + 10\cdot 11 + 8\cdot 11^{2} + 2\cdot 11^{3} + 8\cdot 11^{4} + 11^{5} + 11^{6} + 7\cdot 11^{7} + 9\cdot 11^{8} + 2\cdot 11^{9} + 4\cdot 11^{10} + 3\cdot 11^{11} + 7\cdot 11^{12} + 3\cdot 11^{13} + 8\cdot 11^{14} + 7\cdot 11^{15} +O\left(11^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(3,4)(7,8)$
$(2,4,8)(3,6,7)$
$(1,6,8)(2,5,3)(4,9,7)$
$(1,5,9)(2,4,8)(3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,4)(2,9)(5,8)$$-1$
$1$$3$$(1,5,9)(2,4,8)(3,7,6)$$-3 \zeta_{3} - 3$
$1$$3$$(1,9,5)(2,8,4)(3,6,7)$$3 \zeta_{3}$
$6$$3$$(1,6,8)(2,5,3)(4,9,7)$$0$
$6$$3$$(1,7,8)(2,5,6)(3,4,9)$$0$
$6$$3$$(2,4,8)(3,6,7)$$0$
$6$$3$$(1,8,3)(2,7,5)(4,6,9)$$0$
$9$$6$$(1,2,5,4,9,8)(3,6,7)$$-\zeta_{3}$
$9$$6$$(1,8,9,4,5,2)(3,7,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.