Properties

Label 3.2e11_5e2.4t5.6
Dimension 3
Group $S_4$
Conductor $ 2^{11} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$51200= 2^{11} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} + 2 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 14\cdot 43 + 42\cdot 43^{2} + 21\cdot 43^{3} + 34\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 28 + \left(39 a + 16\right)\cdot 43 + \left(23 a + 29\right)\cdot 43^{2} + \left(30 a + 39\right)\cdot 43^{3} + \left(11 a + 30\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 a + 25 + \left(35 a + 21\right)\cdot 43 + \left(36 a + 42\right)\cdot 43^{2} + \left(33 a + 22\right)\cdot 43^{3} + \left(21 a + 27\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 28\cdot 43 + 21\cdot 43^{3} + 8\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 15 + \left(3 a + 26\right)\cdot 43 + \left(19 a + 13\right)\cdot 43^{2} + \left(12 a + 3\right)\cdot 43^{3} + \left(31 a + 12\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 18 + \left(7 a + 21\right)\cdot 43 + 6 a\cdot 43^{2} + \left(9 a + 20\right)\cdot 43^{3} + \left(21 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(2,5)(3,6)$
$(1,5,3)(2,6,4)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,5,3)(2,6,4)$ $0$
$6$ $4$ $(2,6,5,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.