Properties

Label 3.2e11_3e3.4t5.4c1
Dimension 3
Group $S_4$
Conductor $ 2^{11} \cdot 3^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$55296= 2^{11} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} + 18 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 4 + \left(14 a + 4\right)\cdot 19 + \left(14 a + 14\right)\cdot 19^{2} + \left(a + 3\right)\cdot 19^{3} + \left(5 a + 4\right)\cdot 19^{4} + \left(5 a + 18\right)\cdot 19^{5} + \left(14 a + 1\right)\cdot 19^{6} + 17\cdot 19^{7} + \left(12 a + 16\right)\cdot 19^{8} + 18 a\cdot 19^{9} + \left(10 a + 12\right)\cdot 19^{10} + \left(10 a + 4\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 8 + 13\cdot 19 + 17\cdot 19^{3} + 5\cdot 19^{5} + 11\cdot 19^{6} + 13\cdot 19^{7} + 12\cdot 19^{8} + 8\cdot 19^{9} + 10\cdot 19^{10} + 4\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 7 + \left(14 a + 8\right)\cdot 19 + \left(14 a + 4\right)\cdot 19^{2} + \left(a + 9\right)\cdot 19^{3} + \left(5 a + 11\right)\cdot 19^{4} + 5 a\cdot 19^{5} + \left(14 a + 8\right)\cdot 19^{6} + 15\cdot 19^{7} + \left(12 a + 9\right)\cdot 19^{8} + \left(18 a + 11\right)\cdot 19^{9} + \left(10 a + 14\right)\cdot 19^{10} + \left(10 a + 14\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 15 + \left(4 a + 14\right)\cdot 19 + \left(4 a + 4\right)\cdot 19^{2} + \left(17 a + 15\right)\cdot 19^{3} + \left(13 a + 14\right)\cdot 19^{4} + 13 a\cdot 19^{5} + \left(4 a + 17\right)\cdot 19^{6} + \left(18 a + 1\right)\cdot 19^{7} + \left(6 a + 2\right)\cdot 19^{8} + 18\cdot 19^{9} + \left(8 a + 6\right)\cdot 19^{10} + \left(8 a + 14\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 11 + 5\cdot 19 + 18\cdot 19^{2} + 19^{3} + 18\cdot 19^{4} + 13\cdot 19^{5} + 7\cdot 19^{6} + 5\cdot 19^{7} + 6\cdot 19^{8} + 10\cdot 19^{9} + 8\cdot 19^{10} + 14\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 12 + \left(4 a + 10\right)\cdot 19 + \left(4 a + 14\right)\cdot 19^{2} + \left(17 a + 9\right)\cdot 19^{3} + \left(13 a + 7\right)\cdot 19^{4} + \left(13 a + 18\right)\cdot 19^{5} + \left(4 a + 10\right)\cdot 19^{6} + \left(18 a + 3\right)\cdot 19^{7} + \left(6 a + 9\right)\cdot 19^{8} + 7\cdot 19^{9} + \left(8 a + 4\right)\cdot 19^{10} + \left(8 a + 4\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(4,6)$
$(1,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,3)(4,6)$$1$
$8$$3$$(1,2,6)(3,4,5)$$0$
$6$$4$$(1,2,4,5)(3,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.