Properties

Label 3.2e11_29e2.4t5.5c1
Dimension 3
Group $S_4$
Conductor $ 2^{11} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1722368= 2^{11} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} + 36 x^{2} - 32 x + 66 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 129\cdot 167 + 151\cdot 167^{2} + 165\cdot 167^{3} + 22\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 77 + 70\cdot 167 + 59\cdot 167^{2} + 53\cdot 167^{3} + 110\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 103 + 141\cdot 167 + 32\cdot 167^{2} + 124\cdot 167^{3} + 107\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 140 + 159\cdot 167 + 89\cdot 167^{2} + 157\cdot 167^{3} + 92\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.