Properties

Label 3.2e11_13e3.4t5.5c1
Dimension 3
Group $S_4$
Conductor $ 2^{11} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4499456= 2^{11} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 25 x^{2} + 29 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e3_13.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 31 + 11\cdot 31^{2} + 7\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 17 + \left(16 a + 25\right)\cdot 31 + \left(6 a + 9\right)\cdot 31^{2} + \left(15 a + 4\right)\cdot 31^{3} + \left(4 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 12 + \left(8 a + 29\right)\cdot 31 + \left(7 a + 1\right)\cdot 31^{2} + \left(4 a + 5\right)\cdot 31^{3} + \left(11 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 13 + \left(22 a + 30\right)\cdot 31 + \left(23 a + 7\right)\cdot 31^{2} + \left(26 a + 6\right)\cdot 31^{3} + \left(19 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 + 16\cdot 31 + 24\cdot 31^{2} + 10\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 30 + \left(14 a + 5\right)\cdot 31 + \left(24 a + 6\right)\cdot 31^{2} + \left(15 a + 28\right)\cdot 31^{3} + \left(26 a + 14\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,5,6)$
$(2,6)(3,4)$
$(1,3,6)(2,5,4)$
$(1,6,5,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,6)(3,4)$$-1$
$6$$2$$(1,2)(3,4)(5,6)$$1$
$8$$3$$(1,2,4)(3,5,6)$$0$
$6$$4$$(2,4,6,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.