Properties

Label 3.2e11_13.4t5.5c1
Dimension 3
Group $S_4$
Conductor $ 2^{11} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$26624= 2^{11} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{4} - 6 x^{3} + 17 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e3_13.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 7\cdot 31 + 7\cdot 31^{2} + 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 23\cdot 31 + 8\cdot 31^{2} + 2\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 14 + \left(28 a + 8\right)\cdot 31 + \left(8 a + 10\right)\cdot 31^{2} + \left(18 a + 7\right)\cdot 31^{3} + \left(18 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 24 + \left(21 a + 3\right)\cdot 31 + \left(2 a + 26\right)\cdot 31^{2} + \left(13 a + 12\right)\cdot 31^{3} + 4\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 29 + \left(9 a + 28\right)\cdot 31 + \left(28 a + 9\right)\cdot 31^{2} + \left(17 a + 5\right)\cdot 31^{3} + \left(30 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 11 + \left(2 a + 20\right)\cdot 31 + \left(22 a + 30\right)\cdot 31^{2} + \left(12 a + 3\right)\cdot 31^{3} + \left(12 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2,5)$
$(1,6,4)(2,3,5)$
$(1,3,4)(2,6,5)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(3,6)(4,5)$$-1$
$6$$2$$(1,5)(2,4)(3,6)$$1$
$8$$3$$(1,6,4)(2,3,5)$$0$
$6$$4$$(1,4,2,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.