Properties

Label 3.2e10_3e5.6t11.6c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{10} \cdot 3^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$248832= 2^{10} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} - 18 x^{4} + 72 x^{2} - 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 19.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 9 + \left(5 a + 7\right)\cdot 11 + \left(9 a + 5\right)\cdot 11^{2} + \left(7 a + 5\right)\cdot 11^{3} + \left(2 a + 6\right)\cdot 11^{4} + \left(2 a + 4\right)\cdot 11^{5} + \left(10 a + 10\right)\cdot 11^{6} + \left(a + 2\right)\cdot 11^{7} + \left(7 a + 5\right)\cdot 11^{8} + \left(9 a + 4\right)\cdot 11^{9} + \left(7 a + 8\right)\cdot 11^{10} + \left(7 a + 3\right)\cdot 11^{11} + \left(7 a + 7\right)\cdot 11^{12} + 7 a\cdot 11^{13} + \left(9 a + 5\right)\cdot 11^{14} + \left(8 a + 6\right)\cdot 11^{15} + 8 a\cdot 11^{16} + \left(10 a + 4\right)\cdot 11^{17} + \left(2 a + 9\right)\cdot 11^{18} +O\left(11^{ 19 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 3 + \left(5 a + 3\right)\cdot 11 + \left(a + 5\right)\cdot 11^{2} + \left(3 a + 5\right)\cdot 11^{3} + \left(8 a + 9\right)\cdot 11^{4} + \left(8 a + 10\right)\cdot 11^{5} + 4\cdot 11^{6} + 9 a\cdot 11^{7} + \left(3 a + 10\right)\cdot 11^{8} + \left(a + 2\right)\cdot 11^{9} + \left(3 a + 8\right)\cdot 11^{10} + \left(3 a + 4\right)\cdot 11^{11} + \left(3 a + 8\right)\cdot 11^{12} + \left(3 a + 1\right)\cdot 11^{13} + \left(a + 3\right)\cdot 11^{14} + \left(2 a + 10\right)\cdot 11^{15} + \left(2 a + 4\right)\cdot 11^{16} + 5\cdot 11^{17} + \left(8 a + 10\right)\cdot 11^{18} +O\left(11^{ 19 }\right)$
$r_{ 3 }$ $=$ $ 5 + 9\cdot 11 + 10\cdot 11^{2} + 11^{3} + 10\cdot 11^{4} + 7\cdot 11^{5} + 6\cdot 11^{6} + 8\cdot 11^{7} + 10\cdot 11^{8} + 11^{9} + 7\cdot 11^{10} + 4\cdot 11^{11} + 10\cdot 11^{12} + 2\cdot 11^{13} + 7\cdot 11^{14} + 10\cdot 11^{15} + 2\cdot 11^{16} + 7\cdot 11^{17} + 10\cdot 11^{18} +O\left(11^{ 19 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 2 + \left(5 a + 3\right)\cdot 11 + \left(a + 5\right)\cdot 11^{2} + \left(3 a + 5\right)\cdot 11^{3} + \left(8 a + 4\right)\cdot 11^{4} + \left(8 a + 6\right)\cdot 11^{5} + \left(9 a + 8\right)\cdot 11^{7} + \left(3 a + 5\right)\cdot 11^{8} + \left(a + 6\right)\cdot 11^{9} + \left(3 a + 2\right)\cdot 11^{10} + \left(3 a + 7\right)\cdot 11^{11} + \left(3 a + 3\right)\cdot 11^{12} + \left(3 a + 10\right)\cdot 11^{13} + \left(a + 5\right)\cdot 11^{14} + \left(2 a + 4\right)\cdot 11^{15} + \left(2 a + 10\right)\cdot 11^{16} + 6\cdot 11^{17} + \left(8 a + 1\right)\cdot 11^{18} +O\left(11^{ 19 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 8 + \left(5 a + 7\right)\cdot 11 + \left(9 a + 5\right)\cdot 11^{2} + \left(7 a + 5\right)\cdot 11^{3} + \left(2 a + 1\right)\cdot 11^{4} + 2 a\cdot 11^{5} + \left(10 a + 6\right)\cdot 11^{6} + \left(a + 10\right)\cdot 11^{7} + 7 a\cdot 11^{8} + \left(9 a + 8\right)\cdot 11^{9} + \left(7 a + 2\right)\cdot 11^{10} + \left(7 a + 6\right)\cdot 11^{11} + \left(7 a + 2\right)\cdot 11^{12} + \left(7 a + 9\right)\cdot 11^{13} + \left(9 a + 7\right)\cdot 11^{14} + 8 a\cdot 11^{15} + \left(8 a + 6\right)\cdot 11^{16} + \left(10 a + 5\right)\cdot 11^{17} + 2 a\cdot 11^{18} +O\left(11^{ 19 }\right)$
$r_{ 6 }$ $=$ $ 6 + 11 + 9\cdot 11^{3} + 3\cdot 11^{5} + 4\cdot 11^{6} + 2\cdot 11^{7} + 9\cdot 11^{9} + 3\cdot 11^{10} + 6\cdot 11^{11} + 8\cdot 11^{13} + 3\cdot 11^{14} + 8\cdot 11^{16} + 3\cdot 11^{17} +O\left(11^{ 19 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,4)(2,3,5,6)$$1$
$8$$6$$(1,2,3,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.