Properties

Label 3.2e10_3e4.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$82944= 2^{10} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{4} - 16 x - 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 149\cdot 181 + 73\cdot 181^{2} + 50\cdot 181^{3} + 56\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 16\cdot 181 + 103\cdot 181^{2} + 139\cdot 181^{3} + 88\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 105 + 24\cdot 181 + 38\cdot 181^{2} + 15\cdot 181^{3} + 173\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 171 + 171\cdot 181 + 146\cdot 181^{2} + 156\cdot 181^{3} + 43\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.