Properties

Label 3.2e10_3e4.4t5.6
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 3^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$82944= 2^{10} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} + 18 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 18\cdot 41 + 23\cdot 41^{2} + 19\cdot 41^{3} + 8\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 19 + \left(17 a + 36\right)\cdot 41 + \left(3 a + 23\right)\cdot 41^{2} + \left(17 a + 37\right)\cdot 41^{3} + \left(36 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 2 + \left(40 a + 34\right)\cdot 41 + \left(25 a + 1\right)\cdot 41^{2} + \left(30 a + 8\right)\cdot 41^{3} + \left(9 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 22\cdot 41 + 17\cdot 41^{2} + 21\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 22 + \left(23 a + 4\right)\cdot 41 + \left(37 a + 17\right)\cdot 41^{2} + \left(23 a + 3\right)\cdot 41^{3} + \left(4 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 39 + 6\cdot 41 + \left(15 a + 39\right)\cdot 41^{2} + \left(10 a + 32\right)\cdot 41^{3} + \left(31 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,5)(2,4,3)$
$(1,3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,6,5)(2,4,3)$ $0$
$6$ $4$ $(1,3,4,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.