Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 8 + \left(13 a + 17\right)\cdot 19 + \left(9 a + 7\right)\cdot 19^{2} + \left(12 a + 6\right)\cdot 19^{3} + \left(2 a + 8\right)\cdot 19^{4} + \left(2 a + 16\right)\cdot 19^{5} + \left(14 a + 11\right)\cdot 19^{6} + \left(10 a + 18\right)\cdot 19^{7} + \left(5 a + 14\right)\cdot 19^{8} + \left(2 a + 9\right)\cdot 19^{9} + \left(3 a + 10\right)\cdot 19^{10} + \left(12 a + 15\right)\cdot 19^{11} + \left(14 a + 8\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 6\cdot 19 + 16\cdot 19^{2} + 11\cdot 19^{3} + 19^{4} + 13\cdot 19^{5} + 7\cdot 19^{6} + 5\cdot 19^{7} + 4\cdot 19^{8} + 16\cdot 19^{9} + 17\cdot 19^{10} + 2\cdot 19^{11} + 18\cdot 19^{12} +O\left(19^{ 13 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 a + 1 + \left(13 a + 17\right)\cdot 19 + \left(9 a + 14\right)\cdot 19^{2} + \left(12 a + 9\right)\cdot 19^{3} + \left(2 a + 1\right)\cdot 19^{4} + \left(2 a + 3\right)\cdot 19^{5} + \left(14 a + 14\right)\cdot 19^{6} + \left(10 a + 3\right)\cdot 19^{7} + \left(5 a + 9\right)\cdot 19^{8} + \left(2 a + 12\right)\cdot 19^{9} + \left(3 a + 7\right)\cdot 19^{10} + \left(12 a + 13\right)\cdot 19^{11} + \left(14 a + 7\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a + 11 + \left(5 a + 1\right)\cdot 19 + \left(9 a + 11\right)\cdot 19^{2} + \left(6 a + 12\right)\cdot 19^{3} + \left(16 a + 10\right)\cdot 19^{4} + \left(16 a + 2\right)\cdot 19^{5} + \left(4 a + 7\right)\cdot 19^{6} + 8 a\cdot 19^{7} + \left(13 a + 4\right)\cdot 19^{8} + \left(16 a + 9\right)\cdot 19^{9} + \left(15 a + 8\right)\cdot 19^{10} + \left(6 a + 3\right)\cdot 19^{11} + \left(4 a + 10\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 + 12\cdot 19 + 2\cdot 19^{2} + 7\cdot 19^{3} + 17\cdot 19^{4} + 5\cdot 19^{5} + 11\cdot 19^{6} + 13\cdot 19^{7} + 14\cdot 19^{8} + 2\cdot 19^{9} + 19^{10} + 16\cdot 19^{11} +O\left(19^{ 13 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 9 a + 18 + \left(5 a + 1\right)\cdot 19 + \left(9 a + 4\right)\cdot 19^{2} + \left(6 a + 9\right)\cdot 19^{3} + \left(16 a + 17\right)\cdot 19^{4} + \left(16 a + 15\right)\cdot 19^{5} + \left(4 a + 4\right)\cdot 19^{6} + \left(8 a + 15\right)\cdot 19^{7} + \left(13 a + 9\right)\cdot 19^{8} + \left(16 a + 6\right)\cdot 19^{9} + \left(15 a + 11\right)\cdot 19^{10} + \left(6 a + 5\right)\cdot 19^{11} + \left(4 a + 11\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(5,6)$ |
| $(1,5,3)(2,6,4)$ |
| $(2,6)(3,5)$ |
| $(1,2,3)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,4)(2,5)$ | $-1$ |
| $6$ | $2$ | $(2,3)(5,6)$ | $-1$ |
| $8$ | $3$ | $(1,5,3)(2,6,4)$ | $0$ |
| $6$ | $4$ | $(1,5,4,2)(3,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.