Properties

Label 3.2e10_13e2.6t8.17
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$173056= 2^{10} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 40 x^{2} + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 69 a + 70 + \left(62 a + 81\right)\cdot 89 + \left(39 a + 25\right)\cdot 89^{2} + \left(59 a + 34\right)\cdot 89^{3} + \left(79 a + 62\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 5\cdot 89 + 11\cdot 89^{2} + 38\cdot 89^{3} + 66\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 81 + \left(9 a + 19\right)\cdot 89 + \left(20 a + 23\right)\cdot 89^{2} + \left(77 a + 51\right)\cdot 89^{3} + \left(20 a + 54\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 19 + \left(26 a + 7\right)\cdot 89 + \left(49 a + 63\right)\cdot 89^{2} + \left(29 a + 54\right)\cdot 89^{3} + \left(9 a + 26\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 72 + 83\cdot 89 + 77\cdot 89^{2} + 50\cdot 89^{3} + 22\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 74 a + 8 + \left(79 a + 69\right)\cdot 89 + \left(68 a + 65\right)\cdot 89^{2} + \left(11 a + 37\right)\cdot 89^{3} + \left(68 a + 34\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2,4,5)$
$(1,5,3)(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,6)(2,5)(3,4)$ $-1$
$8$ $3$ $(1,5,3)(2,6,4)$ $0$
$6$ $4$ $(1,2,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.