Properties

Label 3.2e10_13e2.6t8.13
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$173056= 2^{10} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} - 9 x^{2} + 26 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 18 + \left(27 a + 25\right)\cdot 31 + \left(24 a + 19\right)\cdot 31^{2} + \left(24 a + 18\right)\cdot 31^{3} + \left(18 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 23 + \left(12 a + 22\right)\cdot 31 + \left(28 a + 8\right)\cdot 31^{2} + 13 a\cdot 31^{3} + \left(2 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 25\cdot 31 + 21\cdot 31^{2} + 12\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 13 + \left(3 a + 5\right)\cdot 31 + \left(6 a + 11\right)\cdot 31^{2} + \left(6 a + 12\right)\cdot 31^{3} + \left(12 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 8 + \left(18 a + 8\right)\cdot 31 + \left(2 a + 22\right)\cdot 31^{2} + \left(17 a + 30\right)\cdot 31^{3} + \left(28 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 + 5\cdot 31 + 9\cdot 31^{2} + 18\cdot 31^{3} + 13\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,5)(2,4,3)$
$(1,4)(2,5)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,6,5)(2,4,3)$ $0$
$6$ $4$ $(1,2,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.