Properties

Label 3.2e10_13e2.4t5.6c1
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$173056= 2^{10} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} + 10 x^{4} + 42 x^{2} + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 3 + \left(71 a + 86\right)\cdot 89 + \left(23 a + 85\right)\cdot 89^{2} + \left(51 a + 54\right)\cdot 89^{3} + \left(8 a + 84\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 + 55\cdot 89 + 66\cdot 89^{2} + 14\cdot 89^{3} + 85\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 13 + \left(47 a + 62\right)\cdot 89 + \left(57 a + 44\right)\cdot 89^{2} + \left(80 a + 13\right)\cdot 89^{3} + \left(77 a + 79\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 86 + \left(17 a + 2\right)\cdot 89 + \left(65 a + 3\right)\cdot 89^{2} + \left(37 a + 34\right)\cdot 89^{3} + \left(80 a + 4\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 33\cdot 89 + 22\cdot 89^{2} + 74\cdot 89^{3} + 3\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 a + 76 + \left(41 a + 26\right)\cdot 89 + \left(31 a + 44\right)\cdot 89^{2} + \left(8 a + 75\right)\cdot 89^{3} + \left(11 a + 9\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,5)(2,4,3)$
$(1,2,4,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,3)(2,5)(4,6)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,2,4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.