Properties

Label 3.2e10_11e2.6t8.4c1
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$123904= 2^{10} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 2 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 20 + \left(19 a + 9\right)\cdot 23 + \left(8 a + 18\right)\cdot 23^{2} + \left(18 a + 21\right)\cdot 23^{3} + \left(20 a + 7\right)\cdot 23^{4} + \left(7 a + 1\right)\cdot 23^{5} + \left(13 a + 22\right)\cdot 23^{6} + \left(4 a + 12\right)\cdot 23^{7} + \left(22 a + 17\right)\cdot 23^{8} + \left(20 a + 17\right)\cdot 23^{9} + \left(16 a + 14\right)\cdot 23^{10} + \left(13 a + 8\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 + 20\cdot 23 + 9\cdot 23^{2} + 23^{3} + 9\cdot 23^{4} + 20\cdot 23^{6} + 7\cdot 23^{7} + 12\cdot 23^{8} + 7\cdot 23^{10} + 12\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 6 + \left(19 a + 7\right)\cdot 23 + \left(8 a + 6\right)\cdot 23^{2} + \left(18 a + 19\right)\cdot 23^{3} + \left(20 a + 14\right)\cdot 23^{4} + \left(7 a + 3\right)\cdot 23^{5} + \left(13 a + 5\right)\cdot 23^{6} + \left(4 a + 14\right)\cdot 23^{7} + \left(22 a + 11\right)\cdot 23^{8} + \left(20 a + 8\right)\cdot 23^{9} + \left(16 a + 18\right)\cdot 23^{10} + \left(13 a + 3\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 3 + \left(3 a + 13\right)\cdot 23 + \left(14 a + 4\right)\cdot 23^{2} + \left(4 a + 1\right)\cdot 23^{3} + \left(2 a + 15\right)\cdot 23^{4} + \left(15 a + 21\right)\cdot 23^{5} + 9 a\cdot 23^{6} + \left(18 a + 10\right)\cdot 23^{7} + 5\cdot 23^{8} + \left(2 a + 5\right)\cdot 23^{9} + \left(6 a + 8\right)\cdot 23^{10} + \left(9 a + 14\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 19 + 2\cdot 23 + 13\cdot 23^{2} + 21\cdot 23^{3} + 13\cdot 23^{4} + 22\cdot 23^{5} + 2\cdot 23^{6} + 15\cdot 23^{7} + 10\cdot 23^{8} + 22\cdot 23^{9} + 15\cdot 23^{10} + 10\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 17 + \left(3 a + 15\right)\cdot 23 + \left(14 a + 16\right)\cdot 23^{2} + \left(4 a + 3\right)\cdot 23^{3} + \left(2 a + 8\right)\cdot 23^{4} + \left(15 a + 19\right)\cdot 23^{5} + \left(9 a + 17\right)\cdot 23^{6} + \left(18 a + 8\right)\cdot 23^{7} + 11\cdot 23^{8} + \left(2 a + 14\right)\cdot 23^{9} + \left(6 a + 4\right)\cdot 23^{10} + \left(9 a + 19\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,5,3)(2,6,4)$
$(2,6)(3,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(2,5)$$-1$
$6$$2$$(2,3)(5,6)$$-1$
$8$$3$$(1,5,3)(2,6,4)$$0$
$6$$4$$(1,5,4,2)(3,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.