Properties

Label 3.2e10_11e2.4t5.6c1
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$123904= 2^{10} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 6 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 38 + \left(65 a + 46\right)\cdot 73 + \left(70 a + 72\right)\cdot 73^{2} + \left(6 a + 24\right)\cdot 73^{3} + \left(23 a + 5\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 23\cdot 73 + 20\cdot 73^{2} + 29\cdot 73^{3} + 21\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 45 + \left(46 a + 24\right)\cdot 73 + \left(30 a + 50\right)\cdot 73^{2} + \left(9 a + 37\right)\cdot 73^{3} + \left(70 a + 45\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 35 + \left(7 a + 26\right)\cdot 73 + 2 a\cdot 73^{2} + \left(66 a + 48\right)\cdot 73^{3} + \left(49 a + 67\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 + 49\cdot 73 + 52\cdot 73^{2} + 43\cdot 73^{3} + 51\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 28 + \left(26 a + 48\right)\cdot 73 + \left(42 a + 22\right)\cdot 73^{2} + \left(63 a + 35\right)\cdot 73^{3} + \left(2 a + 27\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(2,5)(3,6)$
$(2,3,5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,6)(2,5)(3,4)$$1$
$8$$3$$(1,5,6)(2,3,4)$$0$
$6$$4$$(2,3,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.