Properties

Label 3.2e10_11e2.4t5.5
Dimension 3
Group $S_4$
Conductor $ 2^{10} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$123904= 2^{10} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} - 2 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 53\cdot 61 + 13\cdot 61^{2} + 16\cdot 61^{3} + 45\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 48 + \left(17 a + 34\right)\cdot 61 + \left(41 a + 18\right)\cdot 61^{2} + \left(5 a + 48\right)\cdot 61^{3} + 2\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 a + 36 + \left(15 a + 47\right)\cdot 61 + \left(52 a + 42\right)\cdot 61^{2} + \left(15 a + 48\right)\cdot 61^{3} + \left(47 a + 14\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 7\cdot 61 + 47\cdot 61^{2} + 44\cdot 61^{3} + 15\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 13 + \left(43 a + 26\right)\cdot 61 + \left(19 a + 42\right)\cdot 61^{2} + \left(55 a + 12\right)\cdot 61^{3} + \left(60 a + 58\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 25 + \left(45 a + 13\right)\cdot 61 + \left(8 a + 18\right)\cdot 61^{2} + \left(45 a + 12\right)\cdot 61^{3} + \left(13 a + 46\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,3,5)(2,4,6)$
$(1,6,2)(3,5,4)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,3,5)(2,4,6)$ $0$
$6$ $4$ $(1,5,4,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.