Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 12\cdot 19 + 15\cdot 19^{2} + 6\cdot 19^{3} + 14\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 14 a + 3 + 7 a\cdot 19 + \left(9 a + 9\right)\cdot 19^{2} + 12\cdot 19^{3} + \left(12 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 a + 5 + 10\cdot 19 + \left(3 a + 9\right)\cdot 19^{2} + \left(13 a + 2\right)\cdot 19^{3} + \left(15 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 a + 13 + \left(18 a + 2\right)\cdot 19 + \left(15 a + 12\right)\cdot 19^{2} + \left(5 a + 12\right)\cdot 19^{3} + \left(3 a + 12\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 17 + \left(11 a + 12\right)\cdot 19 + \left(9 a + 10\right)\cdot 19^{2} + \left(18 a + 3\right)\cdot 19^{3} + \left(6 a + 6\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
$-1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
$0$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.