Properties

Label 3.283e3.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 283^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$22665187= 283^{3} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 35 x^{2} + 53 x + 262 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.283.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 5\cdot 101 + 4\cdot 101^{2} + 17\cdot 101^{3} + 39\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 35\cdot 101 + 94\cdot 101^{2} + 74\cdot 101^{3} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 57\cdot 101 + 5\cdot 101^{2} + 61\cdot 101^{3} + 32\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 + 2\cdot 101 + 98\cdot 101^{2} + 48\cdot 101^{3} + 28\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.