Properties

Label 3.283e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 283^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$80089= 283^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 35 x^{2} + 53 x - 21 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 64 + 95\cdot 311 + 116\cdot 311^{2} + 77\cdot 311^{3} + 83\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 97 + 48\cdot 311 + 276\cdot 311^{2} + 235\cdot 311^{3} + 8\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 215 + 29\cdot 311 + 103\cdot 311^{2} + 92\cdot 311^{3} + 43\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 247 + 137\cdot 311 + 126\cdot 311^{2} + 216\cdot 311^{3} + 175\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.