Properties

Label 3.283.4t5.b.a
Dimension $3$
Group $S_4$
Conductor $283$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(283\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.283.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.283.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.283.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 24 + 9\cdot 83 + 12\cdot 83^{2} + 54\cdot 83^{3} + 39\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 69 + 25\cdot 83 + 54\cdot 83^{2} + 79\cdot 83^{3} + 27\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 76 + 31\cdot 83 + 31\cdot 83^{2} + 20\cdot 83^{3} + 46\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 80 + 15\cdot 83 + 68\cdot 83^{2} + 11\cdot 83^{3} + 52\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$