Properties

Label 3.283.4t5.2
Dimension 3
Group $S_4$
Conductor $ 283 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$283 $
Artin number field: Splitting field of $f= x^{6} + x^{4} - x^{3} - x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 4 + \left(14 a + 13\right)\cdot 17 + \left(10 a + 10\right)\cdot 17^{2} + \left(13 a + 3\right)\cdot 17^{3} + \left(12 a + 1\right)\cdot 17^{4} + 6 a\cdot 17^{5} + \left(16 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 + 13\cdot 17^{2} + 3\cdot 17^{3} + 4\cdot 17^{4} + 5\cdot 17^{5} + 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 5 + 15\cdot 17 + 13\cdot 17^{2} + 5\cdot 17^{3} + 9\cdot 17^{4} + 8\cdot 17^{5} + 11\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 6 + \left(10 a + 8\right)\cdot 17 + \left(5 a + 5\right)\cdot 17^{2} + \left(3 a + 8\right)\cdot 17^{3} + \left(15 a + 3\right)\cdot 17^{4} + \left(3 a + 10\right)\cdot 17^{5} + \left(6 a + 8\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 10 + \left(6 a + 14\right)\cdot 17 + 11 a\cdot 17^{2} + \left(13 a + 6\right)\cdot 17^{3} + \left(a + 15\right)\cdot 17^{4} + \left(13 a + 15\right)\cdot 17^{5} + \left(10 a + 10\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 16 + \left(2 a + 15\right)\cdot 17 + \left(6 a + 6\right)\cdot 17^{2} + \left(3 a + 6\right)\cdot 17^{3} + 4 a\cdot 17^{4} + \left(10 a + 11\right)\cdot 17^{5} + 5\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,2,5)(3,6,4)$
$(1,2,6)(3,5,4)$
$(1,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,5)(4,6)$ $1$
$8$ $3$ $(1,2,5)(3,6,4)$ $0$
$6$ $4$ $(1,4)(2,6,3,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.