Properties

Label 3.2777e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2777^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$7711729= 2777^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x^{2} + x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 50 + 8\cdot 277 + 47\cdot 277^{2} + 6\cdot 277^{3} + 206\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 127 + 173\cdot 277 + 218\cdot 277^{2} + 99\cdot 277^{3} + 260\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 128 + 80\cdot 277 + 44\cdot 277^{2} + 26\cdot 277^{3} + 240\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 250 + 14\cdot 277 + 244\cdot 277^{2} + 144\cdot 277^{3} + 124\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.