Properties

Label 3.2707e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2707^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$7327849= 2707^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} - 8 x^{2} + 21 x - 62 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 57 + 319\cdot 467 + 166\cdot 467^{2} + 90\cdot 467^{3} + 336\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 284 + 361\cdot 467 + 371\cdot 467^{2} + 102\cdot 467^{3} + 444\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 304 + 320\cdot 467 + 86\cdot 467^{2} + 383\cdot 467^{3} + 459\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 371 + 34\cdot 467 + 453\cdot 467^{2} + 58\cdot 467^{3} + 426\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 387 + 364\cdot 467 + 322\cdot 467^{2} + 298\cdot 467^{3} + 201\cdot 467^{4} +O\left(467^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.