Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 24 + 232\cdot 373 + 326\cdot 373^{2} + 159\cdot 373^{3} + 359\cdot 373^{4} +O\left(373^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 135 + 278\cdot 373 + 291\cdot 373^{2} + 36\cdot 373^{3} + 360\cdot 373^{4} +O\left(373^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 267 + 48\cdot 373 + 39\cdot 373^{2} + 214\cdot 373^{3} + 129\cdot 373^{4} +O\left(373^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 347 + 73\cdot 373 + 365\cdot 373^{2} + 37\cdot 373^{3} + 211\cdot 373^{4} +O\left(373^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 348 + 112\cdot 373 + 96\cdot 373^{2} + 297\cdot 373^{3} + 58\cdot 373^{4} +O\left(373^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.