Properties

Label 3.2601.6t8.a.a
Dimension $3$
Group $S_4$
Conductor $2601$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(2601\)\(\medspace = 3^{2} \cdot 17^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.7803.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.7803.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 4x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 60 + 70\cdot 199 + 65\cdot 199^{2} + 44\cdot 199^{3} + 154\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 81 + 144\cdot 199 + 144\cdot 199^{2} + 151\cdot 199^{3} + 182\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 116 + 47\cdot 199 + 164\cdot 199^{2} + 62\cdot 199^{3} + 196\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 142 + 135\cdot 199 + 23\cdot 199^{2} + 139\cdot 199^{3} + 63\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$

The blue line marks the conjugacy class containing complex conjugation.