Properties

Label 3.23e2_89e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 23^{2} \cdot 89^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4190209= 23^{2} \cdot 89^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x^{2} - 9 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 48 + 35\cdot 101 + 27\cdot 101^{2} + 95\cdot 101^{3} + 55\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 75 + 43\cdot 101 + 61\cdot 101^{2} + 22\cdot 101^{3} + 90\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 86 + 12\cdot 101 + 43\cdot 101^{2} + 65\cdot 101^{3} + 94\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 + 8\cdot 101 + 70\cdot 101^{2} + 18\cdot 101^{3} + 62\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.