Properties

Label 3.23e2_89.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 89 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$47081= 23^{2} \cdot 89 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 3 x^{3} + 3 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.89.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 3 + \left(15 a + 14\right)\cdot 17 + \left(15 a + 3\right)\cdot 17^{2} + \left(7 a + 2\right)\cdot 17^{3} + \left(15 a + 14\right)\cdot 17^{4} + \left(12 a + 6\right)\cdot 17^{5} + \left(6 a + 8\right)\cdot 17^{6} + \left(7 a + 1\right)\cdot 17^{7} + 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 9 + \left(16 a + 10\right)\cdot 17 + \left(16 a + 6\right)\cdot 17^{2} + \left(7 a + 14\right)\cdot 17^{3} + 16\cdot 17^{4} + \left(15 a + 13\right)\cdot 17^{5} + \left(8 a + 5\right)\cdot 17^{6} + \left(8 a + 6\right)\cdot 17^{7} + 11\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 16 + \left(a + 16\right)\cdot 17 + \left(a + 3\right)\cdot 17^{2} + \left(9 a + 11\right)\cdot 17^{3} + \left(a + 4\right)\cdot 17^{4} + \left(4 a + 4\right)\cdot 17^{5} + \left(10 a + 2\right)\cdot 17^{6} + \left(9 a + 2\right)\cdot 17^{7} + \left(16 a + 11\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 14 + 4\cdot 17 + 7\cdot 17^{2} + \left(9 a + 5\right)\cdot 17^{3} + \left(16 a + 9\right)\cdot 17^{4} + \left(a + 11\right)\cdot 17^{5} + \left(8 a + 16\right)\cdot 17^{6} + \left(8 a + 5\right)\cdot 17^{7} + \left(16 a + 3\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 8 + 14\cdot 17 + 12\cdot 17^{2} + 10\cdot 17^{3} + 3\cdot 17^{4} + 7\cdot 17^{5} + 2\cdot 17^{6} + 4\cdot 17^{7} + 16\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 2 + 7\cdot 17 + 16\cdot 17^{2} + 6\cdot 17^{3} + 2\cdot 17^{4} + 7\cdot 17^{5} + 15\cdot 17^{6} + 13\cdot 17^{7} + 7\cdot 17^{8} +O\left(17^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,2,5)(3,6,4)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)(5,6)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,5)(4,6)$$-1$
$6$$2$$(1,4)(2,5)(3,6)$$1$
$8$$3$$(1,2,5)(3,6,4)$$0$
$6$$4$$(1,6,4,5)$$-1$
$6$$4$$(1,6,4,5)(2,3)$$1$
$8$$6$$(1,6,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.