Properties

Label 3.23e2_79.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 79 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$41791= 23^{2} \cdot 79 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} - x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 65 + \left(33 a + 33\right)\cdot 67 + \left(42 a + 24\right)\cdot 67^{2} + \left(3 a + 49\right)\cdot 67^{3} + \left(59 a + 32\right)\cdot 67^{4} + \left(64 a + 33\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 30 + \left(33 a + 44\right)\cdot 67 + \left(42 a + 39\right)\cdot 67^{2} + \left(3 a + 45\right)\cdot 67^{3} + \left(59 a + 2\right)\cdot 67^{4} + \left(64 a + 34\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 46 + 52\cdot 67 + 17\cdot 67^{2} + 2\cdot 67^{3} + 3\cdot 67^{4} + 30\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 57 a + 38 + \left(33 a + 22\right)\cdot 67 + \left(24 a + 27\right)\cdot 67^{2} + \left(63 a + 21\right)\cdot 67^{3} + \left(7 a + 64\right)\cdot 67^{4} + \left(2 a + 32\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 57 a + 3 + \left(33 a + 33\right)\cdot 67 + \left(24 a + 42\right)\cdot 67^{2} + \left(63 a + 17\right)\cdot 67^{3} + \left(7 a + 34\right)\cdot 67^{4} + \left(2 a + 33\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 + 14\cdot 67 + 49\cdot 67^{2} + 64\cdot 67^{3} + 63\cdot 67^{4} + 36\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(2,3)(4,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,4)$ $-1$
$6$ $2$ $(2,3)(4,6)$ $-1$
$6$ $2$ $(1,5)(2,3)(4,6)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,4,5,2)$ $-1$
$6$ $4$ $(1,6,5,3)(2,4)$ $1$
$8$ $6$ $(1,4,6,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.