Properties

Label 3.23e2_79.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 79 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$41791= 23^{2} \cdot 79 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} + 7 x^{3} + 4 x^{2} - 29 x - 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.79.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 19\cdot 37 + 8\cdot 37^{2} + 27\cdot 37^{3} + 20\cdot 37^{4} + 23\cdot 37^{5} + 8\cdot 37^{6} + 13\cdot 37^{7} + 31\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 23 + \left(36 a + 20\right)\cdot 37 + \left(3 a + 12\right)\cdot 37^{2} + \left(34 a + 16\right)\cdot 37^{3} + \left(10 a + 27\right)\cdot 37^{4} + \left(29 a + 14\right)\cdot 37^{5} + \left(12 a + 23\right)\cdot 37^{6} + \left(26 a + 15\right)\cdot 37^{7} + \left(16 a + 27\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 20 + 29\cdot 37 + \left(33 a + 28\right)\cdot 37^{2} + 2 a\cdot 37^{3} + 26 a\cdot 37^{4} + \left(7 a + 10\right)\cdot 37^{5} + \left(24 a + 8\right)\cdot 37^{6} + \left(10 a + 34\right)\cdot 37^{7} + \left(20 a + 30\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 8 + \left(35 a + 18\right)\cdot 37 + \left(36 a + 33\right)\cdot 37^{2} + \left(17 a + 12\right)\cdot 37^{3} + \left(20 a + 18\right)\cdot 37^{4} + \left(19 a + 18\right)\cdot 37^{5} + \left(a + 21\right)\cdot 37^{6} + \left(21 a + 14\right)\cdot 37^{7} + \left(18 a + 2\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ a + 4 + \left(a + 15\right)\cdot 37 + 34\cdot 37^{2} + \left(19 a + 10\right)\cdot 37^{3} + \left(16 a + 8\right)\cdot 37^{4} + \left(17 a + 2\right)\cdot 37^{5} + \left(35 a + 8\right)\cdot 37^{6} + \left(15 a + 23\right)\cdot 37^{7} + \left(18 a + 18\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 19 + 8\cdot 37 + 30\cdot 37^{2} + 5\cdot 37^{3} + 36\cdot 37^{4} + 4\cdot 37^{5} + 4\cdot 37^{6} + 10\cdot 37^{7} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(5,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(2,5)(3,4)$$-1$
$6$$2$$(1,2)(5,6)$$1$
$6$$2$$(1,2)(3,4)(5,6)$$-1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(2,3,5,4)$$1$
$6$$4$$(1,6)(2,3,5,4)$$-1$
$8$$6$$(1,3,5,6,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.