Properties

Label 3.23e2_61.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$32269= 23^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + \left(55 a + 63\right)\cdot 97 + \left(54 a + 50\right)\cdot 97^{2} + \left(21 a + 94\right)\cdot 97^{3} + \left(57 a + 76\right)\cdot 97^{4} + \left(40 a + 88\right)\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 67 a + 30 + \left(41 a + 88\right)\cdot 97 + \left(42 a + 49\right)\cdot 97^{2} + \left(75 a + 61\right)\cdot 97^{3} + \left(39 a + 15\right)\cdot 97^{4} + \left(56 a + 72\right)\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 68 + \left(55 a + 8\right)\cdot 97 + \left(54 a + 47\right)\cdot 97^{2} + \left(21 a + 35\right)\cdot 97^{3} + \left(57 a + 81\right)\cdot 97^{4} + \left(40 a + 24\right)\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 67 a + 1 + \left(41 a + 34\right)\cdot 97 + \left(42 a + 46\right)\cdot 97^{2} + \left(75 a + 2\right)\cdot 97^{3} + \left(39 a + 20\right)\cdot 97^{4} + \left(56 a + 8\right)\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 81 + 72\cdot 97 + 79\cdot 97^{2} + 64\cdot 97^{3} + 83\cdot 97^{4} + 6\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 17 + 24\cdot 97 + 17\cdot 97^{2} + 32\cdot 97^{3} + 13\cdot 97^{4} + 90\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)(3,4,6)$
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-3$
$3$ $2$ $(1,4)(2,3)$ $-1$
$3$ $2$ $(2,3)$ $1$
$6$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,4)(2,5)(3,6)$ $1$
$8$ $3$ $(1,5,2)(3,4,6)$ $0$
$6$ $4$ $(1,3,4,2)$ $-1$
$6$ $4$ $(1,4)(2,6,3,5)$ $1$
$8$ $6$ $(1,5,2,4,6,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.