Properties

Label 3.23e2_59.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$31211= 23^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} + 2 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 38 + \left(41 a + 19\right)\cdot 79 + \left(74 a + 66\right)\cdot 79^{2} + \left(50 a + 19\right)\cdot 79^{3} + \left(15 a + 70\right)\cdot 79^{4} + \left(76 a + 23\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 72 a + 12 + \left(26 a + 75\right)\cdot 79 + \left(20 a + 7\right)\cdot 79^{2} + \left(66 a + 45\right)\cdot 79^{3} + \left(69 a + 4\right)\cdot 79^{4} + \left(16 a + 13\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 68 + 12\cdot 79 + 16\cdot 79^{2} + 44\cdot 79^{3} + 43\cdot 79^{4} + 6\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 73 a + 44 + \left(37 a + 54\right)\cdot 79 + \left(4 a + 20\right)\cdot 79^{2} + \left(28 a + 75\right)\cdot 79^{3} + \left(63 a + 34\right)\cdot 79^{4} + \left(2 a + 5\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 70 + 44\cdot 79 + 45\cdot 79^{2} + 40\cdot 79^{3} + 75\cdot 79^{4} + 69\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 5 + \left(52 a + 30\right)\cdot 79 + \left(58 a + 1\right)\cdot 79^{2} + \left(12 a + 12\right)\cdot 79^{3} + \left(9 a + 8\right)\cdot 79^{4} + \left(62 a + 39\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,5,6)$
$(4,6)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(1,2)(4,6)$ $-1$
$3$ $2$ $(1,2)$ $1$
$6$ $2$ $(1,4)(2,6)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,3,4)(2,5,6)$ $0$
$6$ $4$ $(1,6,2,4)$ $-1$
$6$ $4$ $(1,6,2,4)(3,5)$ $1$
$8$ $6$ $(1,6,5,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.